贝叶斯和非参数方法用于系统辨识和模型选择

A. Chiuso, G. Pillonetto
{"title":"贝叶斯和非参数方法用于系统辨识和模型选择","authors":"A. Chiuso, G. Pillonetto","doi":"10.1109/ECC.2014.6862632","DOIUrl":null,"url":null,"abstract":"System Identification has been developed, by and large, following the classical parametric approach. In this tutorial we shall discuss how Bayesian statistics and regularization theory can be employed to tackle the system identification problem from a nonparametric (or semi-parametric) point of view. The present paper provides an introduction to the use of Bayesian techniques for smoothness and sparseness, which turn out to be flexible means to face the bias/variance dilemma and to perform model selection.","PeriodicalId":251538,"journal":{"name":"2014 European Control Conference (ECC)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Bayesian and nonparametric methods for system identification and model selection\",\"authors\":\"A. Chiuso, G. Pillonetto\",\"doi\":\"10.1109/ECC.2014.6862632\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"System Identification has been developed, by and large, following the classical parametric approach. In this tutorial we shall discuss how Bayesian statistics and regularization theory can be employed to tackle the system identification problem from a nonparametric (or semi-parametric) point of view. The present paper provides an introduction to the use of Bayesian techniques for smoothness and sparseness, which turn out to be flexible means to face the bias/variance dilemma and to perform model selection.\",\"PeriodicalId\":251538,\"journal\":{\"name\":\"2014 European Control Conference (ECC)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 European Control Conference (ECC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECC.2014.6862632\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 European Control Conference (ECC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECC.2014.6862632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

系统辨识大体上是按照经典的参数方法发展起来的。在本教程中,我们将讨论如何利用贝叶斯统计和正则化理论从非参数(或半参数)的角度来解决系统识别问题。本文介绍了使用贝叶斯技术进行平滑和稀疏,这是面对偏差/方差困境和进行模型选择的灵活手段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian and nonparametric methods for system identification and model selection
System Identification has been developed, by and large, following the classical parametric approach. In this tutorial we shall discuss how Bayesian statistics and regularization theory can be employed to tackle the system identification problem from a nonparametric (or semi-parametric) point of view. The present paper provides an introduction to the use of Bayesian techniques for smoothness and sparseness, which turn out to be flexible means to face the bias/variance dilemma and to perform model selection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信