基于机器学习的生态系统动态红外跌落预测

Yen-Chun Fang, Heng-Yi Lin, Min-Yan Su, C. Li, Eric Jia-Wei Fang
{"title":"基于机器学习的生态系统动态红外跌落预测","authors":"Yen-Chun Fang, Heng-Yi Lin, Min-Yan Su, C. Li, Eric Jia-Wei Fang","doi":"10.1145/3240765.3240823","DOIUrl":null,"url":null,"abstract":"During design signoff, many iterations of Engineer Change Order (ECO) are needed to ensure IR drop of each cell instance meets the specified limit. It is a waste of resources because repeated dynamic IR drop simulations take a very long time on very similar designs. In this work, we train a machine learning model, based on data before ECO, and predict IR drop after ECO. To increase our prediction accuracy, we propose 17 timing-aware, power-aware, and physical-aware features. Our method is scalable because the feature dimension is fixed (937), independent of design size and cell library. Also, we propose to build regional models for cell instances near IR drop violations to improves both prediction accuracy and training time. Our experiments show that our prediction correlation coefficient is 0.97 and average error is 3.0mV on a 5-million-cell industry design. Our IR drop prediction for 100K cell instances can be completed within 2 minutes. Our proposed method provides a fast IR drop prediction to speedup ECO.","PeriodicalId":413037,"journal":{"name":"2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","volume":"130 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"Machine-learning-based Dynamic IR Drop Prediction for ECO\",\"authors\":\"Yen-Chun Fang, Heng-Yi Lin, Min-Yan Su, C. Li, Eric Jia-Wei Fang\",\"doi\":\"10.1145/3240765.3240823\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"During design signoff, many iterations of Engineer Change Order (ECO) are needed to ensure IR drop of each cell instance meets the specified limit. It is a waste of resources because repeated dynamic IR drop simulations take a very long time on very similar designs. In this work, we train a machine learning model, based on data before ECO, and predict IR drop after ECO. To increase our prediction accuracy, we propose 17 timing-aware, power-aware, and physical-aware features. Our method is scalable because the feature dimension is fixed (937), independent of design size and cell library. Also, we propose to build regional models for cell instances near IR drop violations to improves both prediction accuracy and training time. Our experiments show that our prediction correlation coefficient is 0.97 and average error is 3.0mV on a 5-million-cell industry design. Our IR drop prediction for 100K cell instances can be completed within 2 minutes. Our proposed method provides a fast IR drop prediction to speedup ECO.\",\"PeriodicalId\":413037,\"journal\":{\"name\":\"2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)\",\"volume\":\"130 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3240765.3240823\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3240765.3240823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

摘要

在设计签署过程中,需要多次迭代工程师变更单(ECO),以确保每个单元实例的IR下降满足指定的限制。这是一种资源浪费,因为在非常相似的设计上重复动态红外降落模拟需要很长时间。在这项工作中,我们训练了一个机器学习模型,基于ECO之前的数据,并预测ECO之后的IR下降。为了提高我们的预测准确性,我们提出了17个时间感知、功率感知和物理感知特征。我们的方法是可扩展的,因为特征维度是固定的(937),独立于设计大小和单元库。此外,我们还提出了针对IR下降违规附近的单元格实例建立区域模型,以提高预测精度和训练时间。实验表明,在500万电池的工业设计上,我们的预测相关系数为0.97,平均误差为3.0mV。我们对100K cell实例的IR下降预测可以在2分钟内完成。我们提出的方法提供了快速的红外下降预测,以加速ECO。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine-learning-based Dynamic IR Drop Prediction for ECO
During design signoff, many iterations of Engineer Change Order (ECO) are needed to ensure IR drop of each cell instance meets the specified limit. It is a waste of resources because repeated dynamic IR drop simulations take a very long time on very similar designs. In this work, we train a machine learning model, based on data before ECO, and predict IR drop after ECO. To increase our prediction accuracy, we propose 17 timing-aware, power-aware, and physical-aware features. Our method is scalable because the feature dimension is fixed (937), independent of design size and cell library. Also, we propose to build regional models for cell instances near IR drop violations to improves both prediction accuracy and training time. Our experiments show that our prediction correlation coefficient is 0.97 and average error is 3.0mV on a 5-million-cell industry design. Our IR drop prediction for 100K cell instances can be completed within 2 minutes. Our proposed method provides a fast IR drop prediction to speedup ECO.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信