热-电-粘弹性材料的磨损问题

A. Bachmar
{"title":"热-电-粘弹性材料的磨损问题","authors":"A. Bachmar","doi":"10.17516/1997-1397-2022-15-2-239-252","DOIUrl":null,"url":null,"abstract":"In this paper, we consider a mathematical model of a contact problem in thermo-electro- viscoelasticity. The body is in contact with an obstacle. The contact is frictional and bilateral with a moving rigid foundation which results in the wear of the contacting surface. We establish a variational formulation for the model and we prove the existence of a unique weak solution to the problem. The proof is based on a classical existence and uniqueness result on parabolic inequalities, differential equations and fixed point arguments. We present a variational formulation of the problem, and we prove the existence and uniqueness of the weak solution","PeriodicalId":438860,"journal":{"name":"Journal of Siberian Federal University. Mathematics & Physics","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Problem with Wear Involving Thermo-Electro-viscoelastic Materials\",\"authors\":\"A. Bachmar\",\"doi\":\"10.17516/1997-1397-2022-15-2-239-252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider a mathematical model of a contact problem in thermo-electro- viscoelasticity. The body is in contact with an obstacle. The contact is frictional and bilateral with a moving rigid foundation which results in the wear of the contacting surface. We establish a variational formulation for the model and we prove the existence of a unique weak solution to the problem. The proof is based on a classical existence and uniqueness result on parabolic inequalities, differential equations and fixed point arguments. We present a variational formulation of the problem, and we prove the existence and uniqueness of the weak solution\",\"PeriodicalId\":438860,\"journal\":{\"name\":\"Journal of Siberian Federal University. Mathematics & Physics\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Siberian Federal University. Mathematics & Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17516/1997-1397-2022-15-2-239-252\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Siberian Federal University. Mathematics & Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17516/1997-1397-2022-15-2-239-252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文考虑了热电粘弹性中接触问题的数学模型。身体与障碍物接触。接触是摩擦的和双边的,具有移动的刚性基础,这导致接触表面的磨损。建立了该模型的变分公式,并证明了该问题的唯一弱解的存在性。该证明基于抛物型不等式、微分方程和不动点参数的一个经典存在唯一性结果。给出了该问题的变分形式,并证明了弱解的存在唯一性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Problem with Wear Involving Thermo-Electro-viscoelastic Materials
In this paper, we consider a mathematical model of a contact problem in thermo-electro- viscoelasticity. The body is in contact with an obstacle. The contact is frictional and bilateral with a moving rigid foundation which results in the wear of the contacting surface. We establish a variational formulation for the model and we prove the existence of a unique weak solution to the problem. The proof is based on a classical existence and uniqueness result on parabolic inequalities, differential equations and fixed point arguments. We present a variational formulation of the problem, and we prove the existence and uniqueness of the weak solution
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信