对社会负责的(再)保险承保实践:随时可用的“大数据”对优化巨灾风险管理的贡献

Ivelin M. Zvezdov, S. Rath
{"title":"对社会负责的(再)保险承保实践:随时可用的“大数据”对优化巨灾风险管理的贡献","authors":"Ivelin M. Zvezdov, S. Rath","doi":"10.2139/ssrn.2737508","DOIUrl":null,"url":null,"abstract":"Today's advances in big data technologies readily allow for storing large inter-dependent data sets of historical and modeled natural hazard and financial data and unifying their granularity and accuracy with common geo-spatial and risk-type record identifiers. This is a significant component at both single insurance account, and even more so at the larger multi-policy portfolio scale for enabling optimal and socially responsible insurance underwriting practices. This supports insurance risk transfers by creating more accurate and all-uncertainty encompassing pricing techniques, and exposes these techniques and methodologies to all market players, including insurance policy holders via transparent statistical and actuarial principles.","PeriodicalId":210981,"journal":{"name":"Corporate Governance: Social Responsibility & Social Impact eJournal","volume":"588 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Towards Socially Responsible (Re)Insurance Underwriting Practices: Readily Available ‘Big Data’ Contributions to Optimize Catastrophe Risk Management\",\"authors\":\"Ivelin M. Zvezdov, S. Rath\",\"doi\":\"10.2139/ssrn.2737508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Today's advances in big data technologies readily allow for storing large inter-dependent data sets of historical and modeled natural hazard and financial data and unifying their granularity and accuracy with common geo-spatial and risk-type record identifiers. This is a significant component at both single insurance account, and even more so at the larger multi-policy portfolio scale for enabling optimal and socially responsible insurance underwriting practices. This supports insurance risk transfers by creating more accurate and all-uncertainty encompassing pricing techniques, and exposes these techniques and methodologies to all market players, including insurance policy holders via transparent statistical and actuarial principles.\",\"PeriodicalId\":210981,\"journal\":{\"name\":\"Corporate Governance: Social Responsibility & Social Impact eJournal\",\"volume\":\"588 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Corporate Governance: Social Responsibility & Social Impact eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2737508\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corporate Governance: Social Responsibility & Social Impact eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2737508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

如今,大数据技术的进步使存储历史和建模自然灾害和金融数据的大型相互依赖数据集成为可能,并将其粒度和准确性与常见的地理空间和风险类型记录标识符统一起来。这是单个保险账户的重要组成部分,在更大的多保单投资组合规模上更是如此,以实现最优和对社会负责的保险承保实践。这通过创建更准确和完全不确定的定价技术来支持保险风险转移,并通过透明的统计和精算原则将这些技术和方法暴露给所有市场参与者,包括保单持有人。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards Socially Responsible (Re)Insurance Underwriting Practices: Readily Available ‘Big Data’ Contributions to Optimize Catastrophe Risk Management
Today's advances in big data technologies readily allow for storing large inter-dependent data sets of historical and modeled natural hazard and financial data and unifying their granularity and accuracy with common geo-spatial and risk-type record identifiers. This is a significant component at both single insurance account, and even more so at the larger multi-policy portfolio scale for enabling optimal and socially responsible insurance underwriting practices. This supports insurance risk transfers by creating more accurate and all-uncertainty encompassing pricing techniques, and exposes these techniques and methodologies to all market players, including insurance policy holders via transparent statistical and actuarial principles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信