有损源编码的通用性和收敛率

T. Linder, G. Lugosi, K. Zeger
{"title":"有损源编码的通用性和收敛率","authors":"T. Linder, G. Lugosi, K. Zeger","doi":"10.1109/DCC.1993.253141","DOIUrl":null,"url":null,"abstract":"The authors show that without knowing anything about the statistics of a bounded real-valued memoryless source, it is possible to construct a sequence of codes, of rate not exceeding a fixed number R>0, such that the per-letter sample distortion converges to the distortion-rate function D(R) with probability one as the length of the message approaches infinity. It is proven that the distortion converges to D(R) as square root log log n/log n almost surely, where n is the length of the data to be transmitted.<<ETX>>","PeriodicalId":315077,"journal":{"name":"[Proceedings] DCC `93: Data Compression Conference","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Universality and rates of convergence in lossy source coding\",\"authors\":\"T. Linder, G. Lugosi, K. Zeger\",\"doi\":\"10.1109/DCC.1993.253141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors show that without knowing anything about the statistics of a bounded real-valued memoryless source, it is possible to construct a sequence of codes, of rate not exceeding a fixed number R>0, such that the per-letter sample distortion converges to the distortion-rate function D(R) with probability one as the length of the message approaches infinity. It is proven that the distortion converges to D(R) as square root log log n/log n almost surely, where n is the length of the data to be transmitted.<<ETX>>\",\"PeriodicalId\":315077,\"journal\":{\"name\":\"[Proceedings] DCC `93: Data Compression Conference\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[Proceedings] DCC `93: Data Compression Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DCC.1993.253141\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings] DCC `93: Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.1993.253141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

作者证明,在不知道有界实值无记忆源的统计信息的情况下,可以构造一个码序列,其速率不超过一个固定数字R>0,使得每个字母的样本失真随着消息长度趋近于无穷大,以概率1收敛于失真率函数D(R)。证明了失真收敛到D(R)几乎可以肯定地为平方根log log n/log n,其中n是要传输的数据的长度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Universality and rates of convergence in lossy source coding
The authors show that without knowing anything about the statistics of a bounded real-valued memoryless source, it is possible to construct a sequence of codes, of rate not exceeding a fixed number R>0, such that the per-letter sample distortion converges to the distortion-rate function D(R) with probability one as the length of the message approaches infinity. It is proven that the distortion converges to D(R) as square root log log n/log n almost surely, where n is the length of the data to be transmitted.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信