合作定位中NLOS偏差相关的研究

Yunlong Wang, Kai Gu, Ying Wu, Wei Dai, Yuan Shen
{"title":"合作定位中NLOS偏差相关的研究","authors":"Yunlong Wang, Kai Gu, Ying Wu, Wei Dai, Yuan Shen","doi":"10.1109/ICCW.2019.8756706","DOIUrl":null,"url":null,"abstract":"Network localization is challenging in line-of-sight (LOS)/non-line-of-sight (NLOS) mixed environments since the statistics information of NLOS biases is generally unknown. In this paper, we investigate the cooperative localization in LOS/NLOS mixed environments with spatial correlation. A maximum-likelihood estimator (MLE) based algorithm for joint agent localization and bias estimation is proposed without knowing statistics information of NLOS biases. The non-convex MLE is relaxed into a semidefinite programming and spatial correlation constraints are used to improve the localization accuracy. Furthermore, a bias-induced optimization is implemented to improve the localization performance by identifying LOS links. Finally, numerical results validate our theoretical analysis and the performance of the proposed algorithm.","PeriodicalId":426086,"journal":{"name":"2019 IEEE International Conference on Communications Workshops (ICC Workshops)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Exploiting NLOS Bias Correlation in Cooperative Localization\",\"authors\":\"Yunlong Wang, Kai Gu, Ying Wu, Wei Dai, Yuan Shen\",\"doi\":\"10.1109/ICCW.2019.8756706\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Network localization is challenging in line-of-sight (LOS)/non-line-of-sight (NLOS) mixed environments since the statistics information of NLOS biases is generally unknown. In this paper, we investigate the cooperative localization in LOS/NLOS mixed environments with spatial correlation. A maximum-likelihood estimator (MLE) based algorithm for joint agent localization and bias estimation is proposed without knowing statistics information of NLOS biases. The non-convex MLE is relaxed into a semidefinite programming and spatial correlation constraints are used to improve the localization accuracy. Furthermore, a bias-induced optimization is implemented to improve the localization performance by identifying LOS links. Finally, numerical results validate our theoretical analysis and the performance of the proposed algorithm.\",\"PeriodicalId\":426086,\"journal\":{\"name\":\"2019 IEEE International Conference on Communications Workshops (ICC Workshops)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Communications Workshops (ICC Workshops)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCW.2019.8756706\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Communications Workshops (ICC Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCW.2019.8756706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在视距/非视距混合环境下,网络定位具有挑战性,因为视距偏差的统计信息通常是未知的。本文研究了具有空间相关性的LOS/NLOS混合环境下的协同定位。在不知道NLOS偏差统计信息的情况下,提出了一种基于极大似然估计的联合智能体定位和偏差估计算法。将非凸MLE松弛为半定规划,利用空间相关约束提高定位精度。此外,实现了偏差诱导优化,通过识别LOS链路来提高定位性能。最后,数值结果验证了理论分析和算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploiting NLOS Bias Correlation in Cooperative Localization
Network localization is challenging in line-of-sight (LOS)/non-line-of-sight (NLOS) mixed environments since the statistics information of NLOS biases is generally unknown. In this paper, we investigate the cooperative localization in LOS/NLOS mixed environments with spatial correlation. A maximum-likelihood estimator (MLE) based algorithm for joint agent localization and bias estimation is proposed without knowing statistics information of NLOS biases. The non-convex MLE is relaxed into a semidefinite programming and spatial correlation constraints are used to improve the localization accuracy. Furthermore, a bias-induced optimization is implemented to improve the localization performance by identifying LOS links. Finally, numerical results validate our theoretical analysis and the performance of the proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信