基于神经网络的手语手势分类

Zuzanna Parcheta, C. Martínez-Hinarejos
{"title":"基于神经网络的手语手势分类","authors":"Zuzanna Parcheta, C. Martínez-Hinarejos","doi":"10.21437/iberspeech.2018-27","DOIUrl":null,"url":null,"abstract":"Recent studies have demonstrated the power of neural networks for different fields of artificial intelligence. In most fields, such as machine translation or speech recognition, neural networks outperform previously used methods (Hidden Markov Models with Gaussian Mixtures, Statistical Machine Translation, etc.). In this paper, the efficiency of the LeNet convolutional neural network for isolated word sign language recognition is demonstrated. As a preprocessing step, we apply several techniques to obtain the same dimension for the input that contains gesture information. The performance of these preprocessing techniques on a Spanish Sign Language dataset is evaluated. These approaches outperform previously obtained results based on Hidden Markov Models.","PeriodicalId":115963,"journal":{"name":"IberSPEECH Conference","volume":"129 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Sign Language Gesture Classification using Neural Networks\",\"authors\":\"Zuzanna Parcheta, C. Martínez-Hinarejos\",\"doi\":\"10.21437/iberspeech.2018-27\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent studies have demonstrated the power of neural networks for different fields of artificial intelligence. In most fields, such as machine translation or speech recognition, neural networks outperform previously used methods (Hidden Markov Models with Gaussian Mixtures, Statistical Machine Translation, etc.). In this paper, the efficiency of the LeNet convolutional neural network for isolated word sign language recognition is demonstrated. As a preprocessing step, we apply several techniques to obtain the same dimension for the input that contains gesture information. The performance of these preprocessing techniques on a Spanish Sign Language dataset is evaluated. These approaches outperform previously obtained results based on Hidden Markov Models.\",\"PeriodicalId\":115963,\"journal\":{\"name\":\"IberSPEECH Conference\",\"volume\":\"129 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IberSPEECH Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21437/iberspeech.2018-27\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IberSPEECH Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/iberspeech.2018-27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

最近的研究已经证明了神经网络在人工智能不同领域的强大作用。在大多数领域,如机器翻译或语音识别,神经网络优于以前使用的方法(高斯混合隐马尔可夫模型,统计机器翻译等)。本文验证了LeNet卷积神经网络在孤立词手语识别中的有效性。作为预处理步骤,我们应用了几种技术来获得包含手势信息的输入的相同维度。对这些预处理技术在西班牙手语数据集上的性能进行了评估。这些方法优于先前基于隐马尔可夫模型获得的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sign Language Gesture Classification using Neural Networks
Recent studies have demonstrated the power of neural networks for different fields of artificial intelligence. In most fields, such as machine translation or speech recognition, neural networks outperform previously used methods (Hidden Markov Models with Gaussian Mixtures, Statistical Machine Translation, etc.). In this paper, the efficiency of the LeNet convolutional neural network for isolated word sign language recognition is demonstrated. As a preprocessing step, we apply several techniques to obtain the same dimension for the input that contains gesture information. The performance of these preprocessing techniques on a Spanish Sign Language dataset is evaluated. These approaches outperform previously obtained results based on Hidden Markov Models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信