基于NMF的土耳其语文本聚类降维方法

A. Guran, M. Ganiz, H. S. Naiboglu, Halil Oguz Kaptikacti
{"title":"基于NMF的土耳其语文本聚类降维方法","authors":"A. Guran, M. Ganiz, H. S. Naiboglu, Halil Oguz Kaptikacti","doi":"10.1109/INISTA.2013.6577618","DOIUrl":null,"url":null,"abstract":"In this work, we analyze the effects of NMF based dimension reduction methods on clustering of Turkish documents by using k-means clustering algorithm. All experiments are conducted on two different datasets that we call Milliyet4c1k and 1150haber. The NMF based dimension reduction methods have two purposes: to reduce the original vector space by transformation and to reduce size and dimension by summarizing original documents. Experimental results show that NMF transformation yields to better clustering results on both datasets. Using k-means on summarized documents produces almost identical result with k-means on original documents. Although using summaries instead of full documents doesn't improve quality of clustering, we show that it significantly reduces the size of the processed data and execution time of k-means clustering algorithm.","PeriodicalId":301458,"journal":{"name":"2013 IEEE INISTA","volume":"129 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"NMF based dimension reduction methods for Turkish text clustering\",\"authors\":\"A. Guran, M. Ganiz, H. S. Naiboglu, Halil Oguz Kaptikacti\",\"doi\":\"10.1109/INISTA.2013.6577618\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we analyze the effects of NMF based dimension reduction methods on clustering of Turkish documents by using k-means clustering algorithm. All experiments are conducted on two different datasets that we call Milliyet4c1k and 1150haber. The NMF based dimension reduction methods have two purposes: to reduce the original vector space by transformation and to reduce size and dimension by summarizing original documents. Experimental results show that NMF transformation yields to better clustering results on both datasets. Using k-means on summarized documents produces almost identical result with k-means on original documents. Although using summaries instead of full documents doesn't improve quality of clustering, we show that it significantly reduces the size of the processed data and execution time of k-means clustering algorithm.\",\"PeriodicalId\":301458,\"journal\":{\"name\":\"2013 IEEE INISTA\",\"volume\":\"129 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE INISTA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INISTA.2013.6577618\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE INISTA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INISTA.2013.6577618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在这项工作中,我们使用k-means聚类算法分析了基于NMF的降维方法对土耳其语文档聚类的影响。所有的实验都是在两个不同的数据集上进行的,我们称之为Milliyet4c1k和1150haber。基于NMF的降维方法有两个目的:一是通过变换对原始向量空间进行降维,二是通过对原始文档进行汇总来实现降维。实验结果表明,NMF变换对两个数据集的聚类效果都较好。在摘要文档上使用k-means与在原始文档上使用k-means产生几乎相同的结果。虽然使用摘要代替完整文档并不能提高聚类的质量,但我们发现它显著地减少了处理数据的大小和k-means聚类算法的执行时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
NMF based dimension reduction methods for Turkish text clustering
In this work, we analyze the effects of NMF based dimension reduction methods on clustering of Turkish documents by using k-means clustering algorithm. All experiments are conducted on two different datasets that we call Milliyet4c1k and 1150haber. The NMF based dimension reduction methods have two purposes: to reduce the original vector space by transformation and to reduce size and dimension by summarizing original documents. Experimental results show that NMF transformation yields to better clustering results on both datasets. Using k-means on summarized documents produces almost identical result with k-means on original documents. Although using summaries instead of full documents doesn't improve quality of clustering, we show that it significantly reduces the size of the processed data and execution time of k-means clustering algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信