传感器状态不确定的多目标跟踪在自动驾驶汽车数据中的应用

Markus Fröhle, Karl Granström, H. Wymeersch
{"title":"传感器状态不确定的多目标跟踪在自动驾驶汽车数据中的应用","authors":"Markus Fröhle, Karl Granström, H. Wymeersch","doi":"10.1109/SSP.2018.8450842","DOIUrl":null,"url":null,"abstract":"In a conventional multitarget tracking (MTT) scenario, the sensor position is assumed known. When the MTT sensor, e.g., an automotive radar, is mounted to a moving vehicle with uncertain state, it becomes necessary to relax this assumption and model the unknown sensor position explicitly. In this paper, we compare a recently proposed filter that models the unknown sensor state [1], to two versions of the track-oriented marginal MeMBer/Poisson (TOMB/P) filter: the first does not model the sensor state uncertainty; the second models it approximately by artificially increasing the measurement variance. The results, using real measurement data, show that in terms of tracking performance, the proposed filter can outperform TOMB/P without sensor state uncertainty, and is comparable to TOMB/P with increased variance.","PeriodicalId":330528,"journal":{"name":"2018 IEEE Statistical Signal Processing Workshop (SSP)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Multiple Target Tracking With Uncertain Sensor State Applied To Autonomous Vehicle Data\",\"authors\":\"Markus Fröhle, Karl Granström, H. Wymeersch\",\"doi\":\"10.1109/SSP.2018.8450842\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a conventional multitarget tracking (MTT) scenario, the sensor position is assumed known. When the MTT sensor, e.g., an automotive radar, is mounted to a moving vehicle with uncertain state, it becomes necessary to relax this assumption and model the unknown sensor position explicitly. In this paper, we compare a recently proposed filter that models the unknown sensor state [1], to two versions of the track-oriented marginal MeMBer/Poisson (TOMB/P) filter: the first does not model the sensor state uncertainty; the second models it approximately by artificially increasing the measurement variance. The results, using real measurement data, show that in terms of tracking performance, the proposed filter can outperform TOMB/P without sensor state uncertainty, and is comparable to TOMB/P with increased variance.\",\"PeriodicalId\":330528,\"journal\":{\"name\":\"2018 IEEE Statistical Signal Processing Workshop (SSP)\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Statistical Signal Processing Workshop (SSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSP.2018.8450842\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Statistical Signal Processing Workshop (SSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSP.2018.8450842","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在传统的多目标跟踪(MTT)方案中,假设传感器位置是已知的。当MTT传感器(如汽车雷达)安装在状态不确定的移动车辆上时,有必要放宽这一假设,明确地建立未知传感器位置的模型。在本文中,我们将最近提出的一种模拟未知传感器状态的滤波器[1]与两种版本的轨迹导向边缘成员/泊松(TOMB/P)滤波器进行了比较:第一种不模拟传感器状态的不确定性;第二种是通过人为地增加测量方差来近似地建立模型。使用实际测量数据的结果表明,在跟踪性能方面,所提出的滤波器在没有传感器状态不确定性的情况下优于TOMB/P,并且与方差增加的TOMB/P相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiple Target Tracking With Uncertain Sensor State Applied To Autonomous Vehicle Data
In a conventional multitarget tracking (MTT) scenario, the sensor position is assumed known. When the MTT sensor, e.g., an automotive radar, is mounted to a moving vehicle with uncertain state, it becomes necessary to relax this assumption and model the unknown sensor position explicitly. In this paper, we compare a recently proposed filter that models the unknown sensor state [1], to two versions of the track-oriented marginal MeMBer/Poisson (TOMB/P) filter: the first does not model the sensor state uncertainty; the second models it approximately by artificially increasing the measurement variance. The results, using real measurement data, show that in terms of tracking performance, the proposed filter can outperform TOMB/P without sensor state uncertainty, and is comparable to TOMB/P with increased variance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信