使用单一和集成分类器对Covid-19爆发期间的感受进行阿拉伯情绪分析

Wedad Al-Sorori, A. Mohsen, Yousefvand Ali, Naseebah Maqtary, Asma M. Altabeeb, Belal A. Al-fuhaidi, Abdullah Alhashedi, Hasan Ali Gamal Al-Kaf
{"title":"使用单一和集成分类器对Covid-19爆发期间的感受进行阿拉伯情绪分析","authors":"Wedad Al-Sorori, A. Mohsen, Yousefvand Ali, Naseebah Maqtary, Asma M. Altabeeb, Belal A. Al-fuhaidi, Abdullah Alhashedi, Hasan Ali Gamal Al-Kaf","doi":"10.1109/ITSS-IoE53029.2021.9615256","DOIUrl":null,"url":null,"abstract":"The need to study and analyze public opinions about the Corona virus (COVID-19) pandemic or about those preventive measures that are imposed, led to the emergence of many studies. These conducted studies have concerned the analysis of public feelings and opinions, known as sentiment analysis (SA). Taking a benefit of social media platforms such as Twitter a dataset of Arab people feelings, especially fear and anxiety, towards Covid-19 was built through surveying the Arabic content in this platform. A machine learning (ML) model was applied to analyze and categorize the tweets related to fear and anxiety regarding Covid-19 outbreak. In this model, the word2vec was employed for word embedding to form the vector of features with two CBOW pre-trained models CC.AR.300 and Arabic.news. Moreover, the effect of the sampling technique that is called Synthetic Minority Over-sampling Technique and Edited Nearest Neighbors (SMOTENN) was investigated in this study. In addition, the performance of several single-based and ensemble classifiers were evaluated and discussed. The experimental results show that applying word embedding and SMOTENN with both single and ensemble classifiers achieve a good improvement in terms of F1 average score compared to the baseline, single and ensemble classifiers without SMOTENN.","PeriodicalId":230566,"journal":{"name":"2021 International Conference on Intelligent Technology, System and Service for Internet of Everything (ITSS-IoE)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Arabic Sentiment Analysis towards Feelings among Covid-19 Outbreak Using Single and Ensemble Classifiers\",\"authors\":\"Wedad Al-Sorori, A. Mohsen, Yousefvand Ali, Naseebah Maqtary, Asma M. Altabeeb, Belal A. Al-fuhaidi, Abdullah Alhashedi, Hasan Ali Gamal Al-Kaf\",\"doi\":\"10.1109/ITSS-IoE53029.2021.9615256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The need to study and analyze public opinions about the Corona virus (COVID-19) pandemic or about those preventive measures that are imposed, led to the emergence of many studies. These conducted studies have concerned the analysis of public feelings and opinions, known as sentiment analysis (SA). Taking a benefit of social media platforms such as Twitter a dataset of Arab people feelings, especially fear and anxiety, towards Covid-19 was built through surveying the Arabic content in this platform. A machine learning (ML) model was applied to analyze and categorize the tweets related to fear and anxiety regarding Covid-19 outbreak. In this model, the word2vec was employed for word embedding to form the vector of features with two CBOW pre-trained models CC.AR.300 and Arabic.news. Moreover, the effect of the sampling technique that is called Synthetic Minority Over-sampling Technique and Edited Nearest Neighbors (SMOTENN) was investigated in this study. In addition, the performance of several single-based and ensemble classifiers were evaluated and discussed. The experimental results show that applying word embedding and SMOTENN with both single and ensemble classifiers achieve a good improvement in terms of F1 average score compared to the baseline, single and ensemble classifiers without SMOTENN.\",\"PeriodicalId\":230566,\"journal\":{\"name\":\"2021 International Conference on Intelligent Technology, System and Service for Internet of Everything (ITSS-IoE)\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Intelligent Technology, System and Service for Internet of Everything (ITSS-IoE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITSS-IoE53029.2021.9615256\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Intelligent Technology, System and Service for Internet of Everything (ITSS-IoE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSS-IoE53029.2021.9615256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

有必要研究和分析公众对冠状病毒(COVID-19)大流行或实施的预防措施的意见,导致了许多研究的出现。这些已进行的研究涉及对公众感受和意见的分析,即情绪分析(SA)。利用Twitter等社交媒体平台,通过调查该平台上的阿拉伯语内容,建立了阿拉伯人对Covid-19的感受,特别是恐惧和焦虑的数据集。应用机器学习(ML)模型对与新冠肺炎疫情有关的恐惧和焦虑相关的推文进行了分析和分类。在该模型中,使用word2vec进行词嵌入,与两个CBOW预训练模型CC.AR形成特征向量。300和阿拉伯新闻。此外,本研究还研究了称为合成少数过采样技术和编辑近邻(SMOTENN)的采样技术的效果。此外,还对几种基于单一分类器和集成分类器的性能进行了评价和讨论。实验结果表明,与不使用SMOTENN的基线分类器、单一分类器和集成分类器相比,将单词嵌入和SMOTENN用于单个分类器和集成分类器的F1平均分数都有较好的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Arabic Sentiment Analysis towards Feelings among Covid-19 Outbreak Using Single and Ensemble Classifiers
The need to study and analyze public opinions about the Corona virus (COVID-19) pandemic or about those preventive measures that are imposed, led to the emergence of many studies. These conducted studies have concerned the analysis of public feelings and opinions, known as sentiment analysis (SA). Taking a benefit of social media platforms such as Twitter a dataset of Arab people feelings, especially fear and anxiety, towards Covid-19 was built through surveying the Arabic content in this platform. A machine learning (ML) model was applied to analyze and categorize the tweets related to fear and anxiety regarding Covid-19 outbreak. In this model, the word2vec was employed for word embedding to form the vector of features with two CBOW pre-trained models CC.AR.300 and Arabic.news. Moreover, the effect of the sampling technique that is called Synthetic Minority Over-sampling Technique and Edited Nearest Neighbors (SMOTENN) was investigated in this study. In addition, the performance of several single-based and ensemble classifiers were evaluated and discussed. The experimental results show that applying word embedding and SMOTENN with both single and ensemble classifiers achieve a good improvement in terms of F1 average score compared to the baseline, single and ensemble classifiers without SMOTENN.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信