辛和泊松导出几何和变形量化

T. Pantev, G. Vezzosi
{"title":"辛和泊松导出几何和变形量化","authors":"T. Pantev, G. Vezzosi","doi":"10.1090/PSPUM/097.2/01712","DOIUrl":null,"url":null,"abstract":"We review recent results and ongoing investigations of the symplectic and Poisson geometry of derived moduli spaces, and describe applications to deformation quantization of such spaces.","PeriodicalId":412716,"journal":{"name":"Algebraic Geometry: Salt Lake City\n 2015","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Symplectic and Poisson derived geometry and\\n deformation quantization\",\"authors\":\"T. Pantev, G. Vezzosi\",\"doi\":\"10.1090/PSPUM/097.2/01712\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We review recent results and ongoing investigations of the symplectic and Poisson geometry of derived moduli spaces, and describe applications to deformation quantization of such spaces.\",\"PeriodicalId\":412716,\"journal\":{\"name\":\"Algebraic Geometry: Salt Lake City\\n 2015\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebraic Geometry: Salt Lake City\\n 2015\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/PSPUM/097.2/01712\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Geometry: Salt Lake City\n 2015","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/PSPUM/097.2/01712","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

我们回顾了最近的结果和正在进行的研究的辛和泊松几何的衍生模空间,并描述了这些空间的变形量化的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Symplectic and Poisson derived geometry and deformation quantization
We review recent results and ongoing investigations of the symplectic and Poisson geometry of derived moduli spaces, and describe applications to deformation quantization of such spaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信