求解极大极小线性判别分析问题的分支定界方法

A. Beck, R. Sharon
{"title":"求解极大极小线性判别分析问题的分支定界方法","authors":"A. Beck, R. Sharon","doi":"10.1080/10556788.2023.2198769","DOIUrl":null,"url":null,"abstract":"Fisher linear discriminant analysis (FLDA or LDA) is a well-known technique for dimension reduction and classification. The method was first formulated in 1936 by Fisher in the one-dimensional setting. In this paper, we will examine the LDA problem using a different objective function. Instead of maximizing the sum of all distances between all classes, we will define an objective function that will maximize the minimum separation among all distances between all classes. This leads to a difficult nonconvex optimization problem. We present a branch and bound method for the problem in the case where the reduction is to the one-dimensional space.","PeriodicalId":124811,"journal":{"name":"Optimization Methods and Software","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A branch and bound method solving the max–min linear discriminant analysis problem\",\"authors\":\"A. Beck, R. Sharon\",\"doi\":\"10.1080/10556788.2023.2198769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fisher linear discriminant analysis (FLDA or LDA) is a well-known technique for dimension reduction and classification. The method was first formulated in 1936 by Fisher in the one-dimensional setting. In this paper, we will examine the LDA problem using a different objective function. Instead of maximizing the sum of all distances between all classes, we will define an objective function that will maximize the minimum separation among all distances between all classes. This leads to a difficult nonconvex optimization problem. We present a branch and bound method for the problem in the case where the reduction is to the one-dimensional space.\",\"PeriodicalId\":124811,\"journal\":{\"name\":\"Optimization Methods and Software\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optimization Methods and Software\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10556788.2023.2198769\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimization Methods and Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10556788.2023.2198769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Fisher线性判别分析(FLDA或LDA)是一种著名的降维和分类技术。这个方法最早是在1936年由费雪在一维环境下提出的。在本文中,我们将使用不同的目标函数来研究LDA问题。而不是最大化所有类之间的所有距离的总和,我们将定义一个目标函数,将最大化所有类之间的所有距离之间的最小分离。这导致了一个困难的非凸优化问题。对于一维空间的约简问题,我们给出了一个分支定界方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A branch and bound method solving the max–min linear discriminant analysis problem
Fisher linear discriminant analysis (FLDA or LDA) is a well-known technique for dimension reduction and classification. The method was first formulated in 1936 by Fisher in the one-dimensional setting. In this paper, we will examine the LDA problem using a different objective function. Instead of maximizing the sum of all distances between all classes, we will define an objective function that will maximize the minimum separation among all distances between all classes. This leads to a difficult nonconvex optimization problem. We present a branch and bound method for the problem in the case where the reduction is to the one-dimensional space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信