利用机器学习技术优化精神分裂症诊断预测

Anant V. Nimkar, Divesh R. Kubal
{"title":"利用机器学习技术优化精神分裂症诊断预测","authors":"Anant V. Nimkar, Divesh R. Kubal","doi":"10.1109/ICCOINS.2018.8510599","DOIUrl":null,"url":null,"abstract":"The objective of this paper is to automatically diagnose the mental state disorder named schizophrenia by using multimodal features which are extracted from Magnetic Resonance Imaging (MRI) brain scans. The aim is to achieve highest possible classification (binary) accuracy to achieve best possible prediction of the schizophrenia diagnosis. The importance of feature selection in combination with fine-tuning the parameters of Machine Learning classifiers to solve this problem is explained. Various supervised Machine Learning classifiers were employed and compared with themselves and then with existing systems. The proposed solution achieved AUC score of 0.9473 and an accuracy of 0.9412 as opposed to till date best existing system’s AUC score of 0.928.","PeriodicalId":168165,"journal":{"name":"2018 4th International Conference on Computer and Information Sciences (ICCOINS)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Optimization of Schizophrenia Diagnosis Prediction using Machine Learning Techniques\",\"authors\":\"Anant V. Nimkar, Divesh R. Kubal\",\"doi\":\"10.1109/ICCOINS.2018.8510599\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of this paper is to automatically diagnose the mental state disorder named schizophrenia by using multimodal features which are extracted from Magnetic Resonance Imaging (MRI) brain scans. The aim is to achieve highest possible classification (binary) accuracy to achieve best possible prediction of the schizophrenia diagnosis. The importance of feature selection in combination with fine-tuning the parameters of Machine Learning classifiers to solve this problem is explained. Various supervised Machine Learning classifiers were employed and compared with themselves and then with existing systems. The proposed solution achieved AUC score of 0.9473 and an accuracy of 0.9412 as opposed to till date best existing system’s AUC score of 0.928.\",\"PeriodicalId\":168165,\"journal\":{\"name\":\"2018 4th International Conference on Computer and Information Sciences (ICCOINS)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 4th International Conference on Computer and Information Sciences (ICCOINS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCOINS.2018.8510599\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 4th International Conference on Computer and Information Sciences (ICCOINS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCOINS.2018.8510599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文的目的是利用磁共振成像(MRI)脑扫描提取的多模态特征对精神分裂症进行自动诊断。目的是达到最高可能的分类(二元)准确性,以实现对精神分裂症诊断的最佳可能预测。说明了特征选择与机器学习分类器参数微调相结合对解决这一问题的重要性。使用了各种监督机器学习分类器,并将其与自己进行比较,然后与现有系统进行比较。提出的解决方案的AUC得分为0.9473,准确率为0.9412,而迄今为止最好的现有系统的AUC得分为0.928。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization of Schizophrenia Diagnosis Prediction using Machine Learning Techniques
The objective of this paper is to automatically diagnose the mental state disorder named schizophrenia by using multimodal features which are extracted from Magnetic Resonance Imaging (MRI) brain scans. The aim is to achieve highest possible classification (binary) accuracy to achieve best possible prediction of the schizophrenia diagnosis. The importance of feature selection in combination with fine-tuning the parameters of Machine Learning classifiers to solve this problem is explained. Various supervised Machine Learning classifiers were employed and compared with themselves and then with existing systems. The proposed solution achieved AUC score of 0.9473 and an accuracy of 0.9412 as opposed to till date best existing system’s AUC score of 0.928.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信