连续时间马尔可夫链的混合极限

L. Bortolussi
{"title":"连续时间马尔可夫链的混合极限","authors":"L. Bortolussi","doi":"10.1109/QEST.2011.10","DOIUrl":null,"url":null,"abstract":"We consider the behaviour of sequences of Continuous Time Markov Chains (CTMC) based models of systems of interacting entities, for increasing population levels, in situations when some transitions of the system have rates that are discontinuous functions. This can happen, for instance, in presence of guarded actions. In this setting, standard deterministic approximation results do not apply. However, one can still derive a differential equation by syntactic means, de facto defining an hybrid (piecewise-smooth) dynamical system. We prove that the sequence of CTMC converges to the trajectories of this hybrid dynamical system, under (mild) regularity conditions on these limit trajectories.","PeriodicalId":252235,"journal":{"name":"2011 Eighth International Conference on Quantitative Evaluation of SysTems","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Hybrid Limits of Continuous Time Markov Chains\",\"authors\":\"L. Bortolussi\",\"doi\":\"10.1109/QEST.2011.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the behaviour of sequences of Continuous Time Markov Chains (CTMC) based models of systems of interacting entities, for increasing population levels, in situations when some transitions of the system have rates that are discontinuous functions. This can happen, for instance, in presence of guarded actions. In this setting, standard deterministic approximation results do not apply. However, one can still derive a differential equation by syntactic means, de facto defining an hybrid (piecewise-smooth) dynamical system. We prove that the sequence of CTMC converges to the trajectories of this hybrid dynamical system, under (mild) regularity conditions on these limit trajectories.\",\"PeriodicalId\":252235,\"journal\":{\"name\":\"2011 Eighth International Conference on Quantitative Evaluation of SysTems\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Eighth International Conference on Quantitative Evaluation of SysTems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/QEST.2011.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Eighth International Conference on Quantitative Evaluation of SysTems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QEST.2011.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

我们考虑了基于连续时间马尔可夫链(CTMC)的相互作用实体系统模型序列的行为,对于不断增加的人口水平,当系统的某些过渡具有不连续函数的速率时。例如,这可能发生在防御行动存在的情况下。在此设置中,标准确定性近似结果不适用。然而,人们仍然可以通过句法方法推导微分方程,事实上定义一个混合(分段平滑)动力系统。在这些极限轨迹的(温和)正则性条件下,证明了CTMC序列收敛于该混合动力系统的轨迹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid Limits of Continuous Time Markov Chains
We consider the behaviour of sequences of Continuous Time Markov Chains (CTMC) based models of systems of interacting entities, for increasing population levels, in situations when some transitions of the system have rates that are discontinuous functions. This can happen, for instance, in presence of guarded actions. In this setting, standard deterministic approximation results do not apply. However, one can still derive a differential equation by syntactic means, de facto defining an hybrid (piecewise-smooth) dynamical system. We prove that the sequence of CTMC converges to the trajectories of this hybrid dynamical system, under (mild) regularity conditions on these limit trajectories.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信