重尾单跳网络调度策略

Mihalis G. Markakis, E. Modiano, J. Tsitsiklis
{"title":"重尾单跳网络调度策略","authors":"Mihalis G. Markakis, E. Modiano, J. Tsitsiklis","doi":"10.1109/ALLERTON.2009.5394854","DOIUrl":null,"url":null,"abstract":"In the first part of the paper, we study the impact of scheduling, in a setting of parallel queues with a mix of heavy-tailed and light-tailed traffic. We analyze queue-length unaware scheduling policies, such as round-robin, randomized, and priority, and characterize their performance. We prove the queue-length instability of Max-Weight scheduling, in the presence of heavy-tailed traffic. Motivated by this, we analyze the performance of Max-Weight-α scheduling, and establish conditions on the α-parameters, under which the system is queue-length stable. We also introduce the Max-Weight-log policy, which provides performance guarantees, without any knowledge of the arriving traffic. In the second part of the paper, we extend the results on Max-Weight and Max-Weight-α scheduling to a single-hop network, with arbitrary topology and scheduling constraints.","PeriodicalId":440015,"journal":{"name":"2009 47th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","volume":"565 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"Scheduling policies for single-hop networks with heavy-tailed traffic\",\"authors\":\"Mihalis G. Markakis, E. Modiano, J. Tsitsiklis\",\"doi\":\"10.1109/ALLERTON.2009.5394854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the first part of the paper, we study the impact of scheduling, in a setting of parallel queues with a mix of heavy-tailed and light-tailed traffic. We analyze queue-length unaware scheduling policies, such as round-robin, randomized, and priority, and characterize their performance. We prove the queue-length instability of Max-Weight scheduling, in the presence of heavy-tailed traffic. Motivated by this, we analyze the performance of Max-Weight-α scheduling, and establish conditions on the α-parameters, under which the system is queue-length stable. We also introduce the Max-Weight-log policy, which provides performance guarantees, without any knowledge of the arriving traffic. In the second part of the paper, we extend the results on Max-Weight and Max-Weight-α scheduling to a single-hop network, with arbitrary topology and scheduling constraints.\",\"PeriodicalId\":440015,\"journal\":{\"name\":\"2009 47th Annual Allerton Conference on Communication, Control, and Computing (Allerton)\",\"volume\":\"565 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 47th Annual Allerton Conference on Communication, Control, and Computing (Allerton)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ALLERTON.2009.5394854\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 47th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ALLERTON.2009.5394854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

摘要

在本文的第一部分中,我们研究了在混合了重尾和轻尾交通的并行队列设置下调度的影响。我们分析了不知道队列长度的调度策略,如轮询、随机化和优先级,并描述了它们的性能。证明了重尾交通存在时最大权重调度的队列长度不稳定性。在此基础上,分析了最大权值-α调度的性能,建立了系统在α参数下保持队列长度稳定的条件。我们还引入了Max-Weight-log策略,该策略在不了解到达流量的情况下提供性能保证。在论文的第二部分,我们将Max-Weight和Max-Weight-α调度的结果推广到具有任意拓扑和调度约束的单跳网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scheduling policies for single-hop networks with heavy-tailed traffic
In the first part of the paper, we study the impact of scheduling, in a setting of parallel queues with a mix of heavy-tailed and light-tailed traffic. We analyze queue-length unaware scheduling policies, such as round-robin, randomized, and priority, and characterize their performance. We prove the queue-length instability of Max-Weight scheduling, in the presence of heavy-tailed traffic. Motivated by this, we analyze the performance of Max-Weight-α scheduling, and establish conditions on the α-parameters, under which the system is queue-length stable. We also introduce the Max-Weight-log policy, which provides performance guarantees, without any knowledge of the arriving traffic. In the second part of the paper, we extend the results on Max-Weight and Max-Weight-α scheduling to a single-hop network, with arbitrary topology and scheduling constraints.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信