基于直方图阈值的离散小波变换局部放电信号去噪

R. Hussein, K. Shaban, A. El-Hag
{"title":"基于直方图阈值的离散小波变换局部放电信号去噪","authors":"R. Hussein, K. Shaban, A. El-Hag","doi":"10.1109/ICCSPA.2015.7081289","DOIUrl":null,"url":null,"abstract":"White noise is a major interference source that affects the partial discharge (PD) signal detection and recognition. Wavelet shrinkage denoising methods can efficiently reject the white noise embedded in the PD signal acquisition and measurement processes. The wavelet threshold determination is a key factor in the quality of noise suppression from signals. A novel threshold estimation technique, namely histogram-based threshold estimation (HBTE), is introduced to obtain the optimal level-dependent wavelet thresholds of noisy partial discharge signals. Unlike existing wavelet thresholding techniques, HBTE obtains two different threshold values for each wavelet subband. The proposed method is applied on measured PD signals at different noise levels. Experimental results show that the proposed thresholding approach outperforms the conventional threshold selection rules in terms of signal-to-noise ratio, cross correlation coefficient, root mean square error, and reduction in noise level.","PeriodicalId":395644,"journal":{"name":"2015 International Conference on Communications, Signal Processing, and their Applications (ICCSPA'15)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Histogram-based thresholding in discrete wavelet transform for partial discharge signal denoising\",\"authors\":\"R. Hussein, K. Shaban, A. El-Hag\",\"doi\":\"10.1109/ICCSPA.2015.7081289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"White noise is a major interference source that affects the partial discharge (PD) signal detection and recognition. Wavelet shrinkage denoising methods can efficiently reject the white noise embedded in the PD signal acquisition and measurement processes. The wavelet threshold determination is a key factor in the quality of noise suppression from signals. A novel threshold estimation technique, namely histogram-based threshold estimation (HBTE), is introduced to obtain the optimal level-dependent wavelet thresholds of noisy partial discharge signals. Unlike existing wavelet thresholding techniques, HBTE obtains two different threshold values for each wavelet subband. The proposed method is applied on measured PD signals at different noise levels. Experimental results show that the proposed thresholding approach outperforms the conventional threshold selection rules in terms of signal-to-noise ratio, cross correlation coefficient, root mean square error, and reduction in noise level.\",\"PeriodicalId\":395644,\"journal\":{\"name\":\"2015 International Conference on Communications, Signal Processing, and their Applications (ICCSPA'15)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Communications, Signal Processing, and their Applications (ICCSPA'15)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSPA.2015.7081289\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Communications, Signal Processing, and their Applications (ICCSPA'15)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSPA.2015.7081289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

白噪声是影响局部放电(partial discharge, PD)信号检测和识别的主要干扰源。小波收缩去噪方法可以有效地去除PD信号采集和测量过程中嵌入的白噪声。小波阈值的确定是影响信号噪声抑制质量的关键因素。提出了一种新的阈值估计技术,即基于直方图的阈值估计(HBTE),以获得噪声局部放电信号的最优电平相关小波阈值。与现有的小波阈值技术不同,HBTE为每个小波子带获得两个不同的阈值。将该方法应用于不同噪声水平下的PD测量信号。实验结果表明,该方法在信噪比、互相关系数、均方根误差和降噪方面都优于传统的阈值选择规则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Histogram-based thresholding in discrete wavelet transform for partial discharge signal denoising
White noise is a major interference source that affects the partial discharge (PD) signal detection and recognition. Wavelet shrinkage denoising methods can efficiently reject the white noise embedded in the PD signal acquisition and measurement processes. The wavelet threshold determination is a key factor in the quality of noise suppression from signals. A novel threshold estimation technique, namely histogram-based threshold estimation (HBTE), is introduced to obtain the optimal level-dependent wavelet thresholds of noisy partial discharge signals. Unlike existing wavelet thresholding techniques, HBTE obtains two different threshold values for each wavelet subband. The proposed method is applied on measured PD signals at different noise levels. Experimental results show that the proposed thresholding approach outperforms the conventional threshold selection rules in terms of signal-to-noise ratio, cross correlation coefficient, root mean square error, and reduction in noise level.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信