基于非平衡数据分布的协同Web服务QoS预测

Wei Xiong, Bing Li, Lulu He, Mingming Chen, Jun Chen
{"title":"基于非平衡数据分布的协同Web服务QoS预测","authors":"Wei Xiong, Bing Li, Lulu He, Mingming Chen, Jun Chen","doi":"10.1109/ICWS.2014.61","DOIUrl":null,"url":null,"abstract":"QoS prediction is critical to Web service selection and recommendation. This paper proposes a collaborative approach to quality-of-service (QoS) prediction of web services on unbalanced data distribution by utilizing the past usage history of service users. It avoids expensive and time-consuming web service invocations. There existed several methods which search top-k similar users or services in predicting QoS values of Web services, but they did not consider unbalanced data distribution. Then, we improve existed methods in similar neighbors' selection by sampling importance resampling. To validate our approach, large-scale experiments are conducted based on a real-world Web service dataset, WSDream. The results show that our proposed approach achieves higher prediction accuracy than other approaches.","PeriodicalId":215397,"journal":{"name":"2014 IEEE International Conference on Web Services","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Collaborative Web Service QoS Prediction on Unbalanced Data Distribution\",\"authors\":\"Wei Xiong, Bing Li, Lulu He, Mingming Chen, Jun Chen\",\"doi\":\"10.1109/ICWS.2014.61\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"QoS prediction is critical to Web service selection and recommendation. This paper proposes a collaborative approach to quality-of-service (QoS) prediction of web services on unbalanced data distribution by utilizing the past usage history of service users. It avoids expensive and time-consuming web service invocations. There existed several methods which search top-k similar users or services in predicting QoS values of Web services, but they did not consider unbalanced data distribution. Then, we improve existed methods in similar neighbors' selection by sampling importance resampling. To validate our approach, large-scale experiments are conducted based on a real-world Web service dataset, WSDream. The results show that our proposed approach achieves higher prediction accuracy than other approaches.\",\"PeriodicalId\":215397,\"journal\":{\"name\":\"2014 IEEE International Conference on Web Services\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Web Services\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICWS.2014.61\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Web Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWS.2014.61","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

QoS预测对于Web服务选择和推荐至关重要。本文提出了一种利用服务用户过去使用历史数据对不平衡数据分布下的web服务进行服务质量(QoS)预测的协同方法。它避免了昂贵和耗时的web服务调用。在预测Web服务的QoS值时,已有几种搜索top-k相似用户或服务的方法,但它们没有考虑数据分布的不平衡。然后,通过采样重要性重采样对已有的相似邻居选择方法进行改进。为了验证我们的方法,基于真实的Web服务数据集WSDream进行了大规模的实验。结果表明,该方法具有较高的预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Collaborative Web Service QoS Prediction on Unbalanced Data Distribution
QoS prediction is critical to Web service selection and recommendation. This paper proposes a collaborative approach to quality-of-service (QoS) prediction of web services on unbalanced data distribution by utilizing the past usage history of service users. It avoids expensive and time-consuming web service invocations. There existed several methods which search top-k similar users or services in predicting QoS values of Web services, but they did not consider unbalanced data distribution. Then, we improve existed methods in similar neighbors' selection by sampling importance resampling. To validate our approach, large-scale experiments are conducted based on a real-world Web service dataset, WSDream. The results show that our proposed approach achieves higher prediction accuracy than other approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信