基于增量mdl的模型推理两部分压缩算法的实现

T. S. Markham, S. Evans, J. Impson, E. Steinbrecher
{"title":"基于增量mdl的模型推理两部分压缩算法的实现","authors":"T. S. Markham, S. Evans, J. Impson, E. Steinbrecher","doi":"10.1109/DCC.2009.66","DOIUrl":null,"url":null,"abstract":"We describe the implementation and performance of a compression-based model inference engine, MDLcompress. The MDL-based compression produces a two part code of the training data, with the model portion of the code being used to compress and classify test data. We present pseudo-code of the algorithms for model generation and explore the conflicting requirements between minimizing grammar size and minimizing descriptive cost. We show results of a MDL model-based classification system for network traffic anomaly detection.","PeriodicalId":377880,"journal":{"name":"2009 Data Compression Conference","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Implementation of an Incremental MDL-Based Two Part Compression Algorithm for Model Inference\",\"authors\":\"T. S. Markham, S. Evans, J. Impson, E. Steinbrecher\",\"doi\":\"10.1109/DCC.2009.66\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe the implementation and performance of a compression-based model inference engine, MDLcompress. The MDL-based compression produces a two part code of the training data, with the model portion of the code being used to compress and classify test data. We present pseudo-code of the algorithms for model generation and explore the conflicting requirements between minimizing grammar size and minimizing descriptive cost. We show results of a MDL model-based classification system for network traffic anomaly detection.\",\"PeriodicalId\":377880,\"journal\":{\"name\":\"2009 Data Compression Conference\",\"volume\":\"109 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Data Compression Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DCC.2009.66\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.2009.66","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们描述了一个基于压缩的模型推理引擎MDLcompress的实现和性能。基于mdl的压缩产生训练数据的两部分代码,代码的模型部分用于压缩和分类测试数据。我们提出了模型生成算法的伪代码,并探讨了最小化语法大小和最小化描述成本之间的冲突要求。我们展示了一个基于MDL模型的网络流量异常检测分类系统的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Implementation of an Incremental MDL-Based Two Part Compression Algorithm for Model Inference
We describe the implementation and performance of a compression-based model inference engine, MDLcompress. The MDL-based compression produces a two part code of the training data, with the model portion of the code being used to compress and classify test data. We present pseudo-code of the algorithms for model generation and explore the conflicting requirements between minimizing grammar size and minimizing descriptive cost. We show results of a MDL model-based classification system for network traffic anomaly detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信