Srinivas Yadav, Nikunj Gupta, Auriane Reverdell, H. Kaiser
{"title":"并行SIMD——使用c++数据并行类型实现免费加速的基于策略的解决方案","authors":"Srinivas Yadav, Nikunj Gupta, Auriane Reverdell, H. Kaiser","doi":"10.1109/ESPM254806.2021.00008","DOIUrl":null,"url":null,"abstract":"Recent additions to the C++ standard and ongoing standardization efforts aim to add data-parallel types to the C++ standard library. This enables the use of vectorization techniques in existing C++ codes without having to rely on the C++ compiler’s abilities to auto-vectorize the code’s execution. The integration of the existing parallel algorithms with these new data-parallel types opens up a new way of speeding up existing codes with minimal effort. Today, only very little implementation experience exists for potential data-parallel execution of the standard parallel algorithms. In this paper, we report on experiences and performance analysis results for our implementation of two new data-parallel execution policies usable with HPX’s parallel algorithms module: simd and par_simd. We utilize the new experimental implementation of data-parallel types provided by recent versions of the GCC and Clang C++ standard libraries. The benchmark results collected from artificial tests and real-world codes presented in this paper are very promising. Compared to sequenced execution, we report on speed-ups of more than three orders of magnitude when executed using the newly implemented data-parallel execution policy par_simd with HPX’s parallel algorithms. We also report that our implementation is performance portable across different compute architectures (x64 – Intel and AMD, and Arm), using different vectorization extensions (AVX2, AVX512, and NEON128).","PeriodicalId":155761,"journal":{"name":"2021 IEEE/ACM 6th International Workshop on Extreme Scale Programming Models and Middleware (ESPM2)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Parallel SIMD - A Policy Based Solution for Free Speed-Up using C++ Data-Parallel Types\",\"authors\":\"Srinivas Yadav, Nikunj Gupta, Auriane Reverdell, H. Kaiser\",\"doi\":\"10.1109/ESPM254806.2021.00008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent additions to the C++ standard and ongoing standardization efforts aim to add data-parallel types to the C++ standard library. This enables the use of vectorization techniques in existing C++ codes without having to rely on the C++ compiler’s abilities to auto-vectorize the code’s execution. The integration of the existing parallel algorithms with these new data-parallel types opens up a new way of speeding up existing codes with minimal effort. Today, only very little implementation experience exists for potential data-parallel execution of the standard parallel algorithms. In this paper, we report on experiences and performance analysis results for our implementation of two new data-parallel execution policies usable with HPX’s parallel algorithms module: simd and par_simd. We utilize the new experimental implementation of data-parallel types provided by recent versions of the GCC and Clang C++ standard libraries. The benchmark results collected from artificial tests and real-world codes presented in this paper are very promising. Compared to sequenced execution, we report on speed-ups of more than three orders of magnitude when executed using the newly implemented data-parallel execution policy par_simd with HPX’s parallel algorithms. We also report that our implementation is performance portable across different compute architectures (x64 – Intel and AMD, and Arm), using different vectorization extensions (AVX2, AVX512, and NEON128).\",\"PeriodicalId\":155761,\"journal\":{\"name\":\"2021 IEEE/ACM 6th International Workshop on Extreme Scale Programming Models and Middleware (ESPM2)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE/ACM 6th International Workshop on Extreme Scale Programming Models and Middleware (ESPM2)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESPM254806.2021.00008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/ACM 6th International Workshop on Extreme Scale Programming Models and Middleware (ESPM2)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESPM254806.2021.00008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Parallel SIMD - A Policy Based Solution for Free Speed-Up using C++ Data-Parallel Types
Recent additions to the C++ standard and ongoing standardization efforts aim to add data-parallel types to the C++ standard library. This enables the use of vectorization techniques in existing C++ codes without having to rely on the C++ compiler’s abilities to auto-vectorize the code’s execution. The integration of the existing parallel algorithms with these new data-parallel types opens up a new way of speeding up existing codes with minimal effort. Today, only very little implementation experience exists for potential data-parallel execution of the standard parallel algorithms. In this paper, we report on experiences and performance analysis results for our implementation of two new data-parallel execution policies usable with HPX’s parallel algorithms module: simd and par_simd. We utilize the new experimental implementation of data-parallel types provided by recent versions of the GCC and Clang C++ standard libraries. The benchmark results collected from artificial tests and real-world codes presented in this paper are very promising. Compared to sequenced execution, we report on speed-ups of more than three orders of magnitude when executed using the newly implemented data-parallel execution policy par_simd with HPX’s parallel algorithms. We also report that our implementation is performance portable across different compute architectures (x64 – Intel and AMD, and Arm), using different vectorization extensions (AVX2, AVX512, and NEON128).