无限框架的共边界算子

E. Kastis, D. Kitson, S. Power
{"title":"无限框架的共边界算子","authors":"E. Kastis, D. Kitson, S. Power","doi":"10.3318/pria.2019.119.07","DOIUrl":null,"url":null,"abstract":"We consider, from the point of view of operator theory, a class of infinite matrices in which the matrix entries are determined by an underlying graph structure with accompanying geometric data. This class includes the rigidity matrices of infinite bar-joint frameworks as well as the incidence matrices of infinite directed graphs. We consider the following questions: When do these matrices give rise to bounded operators? Can we compute the operator norm? When are these operators compact? And when are they bounded below?","PeriodicalId":434988,"journal":{"name":"Mathematical Proceedings of the Royal Irish Academy","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Coboundary operators for infinite frameworks\",\"authors\":\"E. Kastis, D. Kitson, S. Power\",\"doi\":\"10.3318/pria.2019.119.07\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider, from the point of view of operator theory, a class of infinite matrices in which the matrix entries are determined by an underlying graph structure with accompanying geometric data. This class includes the rigidity matrices of infinite bar-joint frameworks as well as the incidence matrices of infinite directed graphs. We consider the following questions: When do these matrices give rise to bounded operators? Can we compute the operator norm? When are these operators compact? And when are they bounded below?\",\"PeriodicalId\":434988,\"journal\":{\"name\":\"Mathematical Proceedings of the Royal Irish Academy\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Proceedings of the Royal Irish Academy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3318/pria.2019.119.07\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Proceedings of the Royal Irish Academy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3318/pria.2019.119.07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文从算子理论的角度考虑了一类无限矩阵,其中矩阵的项是由一个包含几何数据的底层图结构决定的。本课程包括无限杆节点框架的刚度矩阵和无限有向图的关联矩阵。我们考虑以下问题:这些矩阵何时产生有界算子?我们能计算算子范数吗?这些算子什么时候是紧化的?它们什么时候被限定在下面?
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coboundary operators for infinite frameworks
We consider, from the point of view of operator theory, a class of infinite matrices in which the matrix entries are determined by an underlying graph structure with accompanying geometric data. This class includes the rigidity matrices of infinite bar-joint frameworks as well as the incidence matrices of infinite directed graphs. We consider the following questions: When do these matrices give rise to bounded operators? Can we compute the operator norm? When are these operators compact? And when are they bounded below?
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信