一种基于关节模型的手部跟踪方法

Hang Zhou, Q. Ruan
{"title":"一种基于关节模型的手部跟踪方法","authors":"Hang Zhou, Q. Ruan","doi":"10.1109/ICOSP.2002.1179947","DOIUrl":null,"url":null,"abstract":"In this paper, we discuss hand modeling, constraint analysis and associated tracking. We take advantage of several correlations between joint rotations in the hand to reduce the number of degrees of freedom in the model and provide a simple and intuitive model. In the second step, an improved tracking algorithm is proposed to detect the region of the fingers. The temporal evolution of the probability density is achieved through sampling from the prior distribution, followed by local optimization of the sample positions to obtain updated modes. It is a good precondition for gesture recognition.","PeriodicalId":159807,"journal":{"name":"6th International Conference on Signal Processing, 2002.","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A method of hand tracking based on articulated model\",\"authors\":\"Hang Zhou, Q. Ruan\",\"doi\":\"10.1109/ICOSP.2002.1179947\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we discuss hand modeling, constraint analysis and associated tracking. We take advantage of several correlations between joint rotations in the hand to reduce the number of degrees of freedom in the model and provide a simple and intuitive model. In the second step, an improved tracking algorithm is proposed to detect the region of the fingers. The temporal evolution of the probability density is achieved through sampling from the prior distribution, followed by local optimization of the sample positions to obtain updated modes. It is a good precondition for gesture recognition.\",\"PeriodicalId\":159807,\"journal\":{\"name\":\"6th International Conference on Signal Processing, 2002.\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"6th International Conference on Signal Processing, 2002.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOSP.2002.1179947\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"6th International Conference on Signal Processing, 2002.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOSP.2002.1179947","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们讨论了手建模,约束分析和相关的跟踪。我们利用了手关节旋转之间的几个相关性来减少模型中的自由度,并提供一个简单直观的模型。第二步,提出了一种改进的跟踪算法来检测手指的区域。概率密度的时间演化是通过从先验分布中抽样,然后对样本位置进行局部优化来获得更新模态来实现的。这是实现手势识别的前提条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A method of hand tracking based on articulated model
In this paper, we discuss hand modeling, constraint analysis and associated tracking. We take advantage of several correlations between joint rotations in the hand to reduce the number of degrees of freedom in the model and provide a simple and intuitive model. In the second step, an improved tracking algorithm is proposed to detect the region of the fingers. The temporal evolution of the probability density is achieved through sampling from the prior distribution, followed by local optimization of the sample positions to obtain updated modes. It is a good precondition for gesture recognition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信