基于模拟退火的分类

S. Finnerty, S. Sen
{"title":"基于模拟退火的分类","authors":"S. Finnerty, S. Sen","doi":"10.1109/TAI.1994.346392","DOIUrl":null,"url":null,"abstract":"Attribute based classification has been one of the most active areas of machine learning research over the past decade. We view the problem of hypotheses formation for classification as a search problem. Whereas previous research acquiring classification knowledge have used a deterministic bias for forming generalizations, we use a more random bias for taking inductive leaps. We re-formulate the supervised classification problem as a function optimization problem, the goal of which is to search for a hypotheses that minimizes the number of incorrect classifications of training instances. We use a simulated annealing based classifier (SAC) to optimize the hypotheses used for classification. The particular variation of simulated annealing algorithm that we have used is known as Very Fast Simulated Re-annealing (VFSR). We use a batch-incremental mode of learning to compare SAC with a genetic algorithm based classifier, GABIL, and a traditional incremental machine learning algorithm, ID5R. By using a set of artificial target concepts, we show that SAC performs better on more complex target concepts.<<ETX>>","PeriodicalId":262014,"journal":{"name":"Proceedings Sixth International Conference on Tools with Artificial Intelligence. TAI 94","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Simulated annealing based classification\",\"authors\":\"S. Finnerty, S. Sen\",\"doi\":\"10.1109/TAI.1994.346392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Attribute based classification has been one of the most active areas of machine learning research over the past decade. We view the problem of hypotheses formation for classification as a search problem. Whereas previous research acquiring classification knowledge have used a deterministic bias for forming generalizations, we use a more random bias for taking inductive leaps. We re-formulate the supervised classification problem as a function optimization problem, the goal of which is to search for a hypotheses that minimizes the number of incorrect classifications of training instances. We use a simulated annealing based classifier (SAC) to optimize the hypotheses used for classification. The particular variation of simulated annealing algorithm that we have used is known as Very Fast Simulated Re-annealing (VFSR). We use a batch-incremental mode of learning to compare SAC with a genetic algorithm based classifier, GABIL, and a traditional incremental machine learning algorithm, ID5R. By using a set of artificial target concepts, we show that SAC performs better on more complex target concepts.<<ETX>>\",\"PeriodicalId\":262014,\"journal\":{\"name\":\"Proceedings Sixth International Conference on Tools with Artificial Intelligence. TAI 94\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Sixth International Conference on Tools with Artificial Intelligence. TAI 94\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TAI.1994.346392\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Sixth International Conference on Tools with Artificial Intelligence. TAI 94","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAI.1994.346392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在过去十年中,基于属性的分类一直是机器学习研究中最活跃的领域之一。我们把分类的假设形成问题看作是一个搜索问题。在以往的研究中,获取分类知识使用确定性偏差来形成归纳,而我们使用更随机的偏差来进行归纳跳跃。我们将监督分类问题重新表述为一个函数优化问题,其目标是寻找一个最小化训练实例错误分类数量的假设。我们使用基于模拟退火的分类器(SAC)来优化用于分类的假设。我们所使用的模拟退火算法的特殊变化被称为快速模拟再退火(VFSR)。我们使用批增量学习模式将SAC与基于遗传算法的分类器GABIL和传统的增量机器学习算法ID5R进行比较。通过使用一组人工目标概念,我们证明SAC在更复杂的目标概念上表现更好
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simulated annealing based classification
Attribute based classification has been one of the most active areas of machine learning research over the past decade. We view the problem of hypotheses formation for classification as a search problem. Whereas previous research acquiring classification knowledge have used a deterministic bias for forming generalizations, we use a more random bias for taking inductive leaps. We re-formulate the supervised classification problem as a function optimization problem, the goal of which is to search for a hypotheses that minimizes the number of incorrect classifications of training instances. We use a simulated annealing based classifier (SAC) to optimize the hypotheses used for classification. The particular variation of simulated annealing algorithm that we have used is known as Very Fast Simulated Re-annealing (VFSR). We use a batch-incremental mode of learning to compare SAC with a genetic algorithm based classifier, GABIL, and a traditional incremental machine learning algorithm, ID5R. By using a set of artificial target concepts, we show that SAC performs better on more complex target concepts.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信