样本大小对股票收益分布的影响——对Nifty & Sensex的调查

G. Agrawal
{"title":"样本大小对股票收益分布的影响——对Nifty & Sensex的调查","authors":"G. Agrawal","doi":"10.2139/ssrn.877068","DOIUrl":null,"url":null,"abstract":"The purpose of the study is to test the impact of the sample size on the distributional characteristic of the stock returns of Nifty & Sensex. Many statistical tools used by the financial analyst and academician for their analysis and research carried out under the assumption that stock returns are normally distributed for all kinds of sample size. Failure of the underlying assumption of normality can mislead the inferences. The study shows that sample size can distort the normality assumption of the stock returns. Based on statistical analysis and normality test, namely, Kolmogorov Smirnov (K-S), Anderson Darling (A-D), Jarque-Bera (J-B) results show that large sample size daily stock returns does not follow the normal distribution while small sample size monthly stock returns follow the normal distribution.","PeriodicalId":163698,"journal":{"name":"Institutional & Transition Economics eJournal","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Impact of Sample Size on the Distribution of Stock Returns - an Investigation of Nifty & Sensex\",\"authors\":\"G. Agrawal\",\"doi\":\"10.2139/ssrn.877068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of the study is to test the impact of the sample size on the distributional characteristic of the stock returns of Nifty & Sensex. Many statistical tools used by the financial analyst and academician for their analysis and research carried out under the assumption that stock returns are normally distributed for all kinds of sample size. Failure of the underlying assumption of normality can mislead the inferences. The study shows that sample size can distort the normality assumption of the stock returns. Based on statistical analysis and normality test, namely, Kolmogorov Smirnov (K-S), Anderson Darling (A-D), Jarque-Bera (J-B) results show that large sample size daily stock returns does not follow the normal distribution while small sample size monthly stock returns follow the normal distribution.\",\"PeriodicalId\":163698,\"journal\":{\"name\":\"Institutional & Transition Economics eJournal\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Institutional & Transition Economics eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.877068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Institutional & Transition Economics eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.877068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本研究的目的是检验样本量对Nifty & Sensex股票收益分布特征的影响。金融分析师和学者在分析和研究中使用的许多统计工具都是在假设股票收益对各种样本量都是正态分布的情况下进行的。基本正态假设的失败可能会误导推论。研究表明,样本量会扭曲股票收益的正态性假设。基于统计分析和正态性检验,即Kolmogorov Smirnov (K-S)、Anderson Darling (A-D)、Jarque-Bera (J-B)的结果表明,大样本量的股票日收益不服从正态分布,而小样本量的股票月收益服从正态分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of Sample Size on the Distribution of Stock Returns - an Investigation of Nifty & Sensex
The purpose of the study is to test the impact of the sample size on the distributional characteristic of the stock returns of Nifty & Sensex. Many statistical tools used by the financial analyst and academician for their analysis and research carried out under the assumption that stock returns are normally distributed for all kinds of sample size. Failure of the underlying assumption of normality can mislead the inferences. The study shows that sample size can distort the normality assumption of the stock returns. Based on statistical analysis and normality test, namely, Kolmogorov Smirnov (K-S), Anderson Darling (A-D), Jarque-Bera (J-B) results show that large sample size daily stock returns does not follow the normal distribution while small sample size monthly stock returns follow the normal distribution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信