用于容错硬实时系统的低能耗备用技术

A. Ejlali, B. Al-Hashimi, P. Eles
{"title":"用于容错硬实时系统的低能耗备用技术","authors":"A. Ejlali, B. Al-Hashimi, P. Eles","doi":"10.1145/1629435.1629463","DOIUrl":null,"url":null,"abstract":"Time redundancy (rollback-recovery) and hardware redundancy are commonly used in real-time systems to achieve fault tolerance. From an energy consumption point of view, time redundancy is generally more preferable than hardware redundancy. However, hard real-time systems often use hardware redundancy to meet high reliability requirements of safety-critical applications. In this paper we propose a hardware-redundancy technique with low energy-overhead for hard real-time systems. The proposed technique is based on standby-sparing, where the system is composed of a primary unit and a spare. Through analytical models, we have developed an online energy-management method which uses a slack reclamation scheme to reduce the energy consumption of both the primary and spare units. In this method, dynamic voltage scaling (DVS) is used for the primary unit and dynamic power management (DPM) is used for the spare. We conducted several experiments to compare the proposed system with a fault-tolerant real-time system which uses time redundancy for fault tolerance and DVS with slack reclamation for low energy consumption. The results show that for relaxed time constraints, the proposed system provides up to 24% energy saving as compared to the time-redundancy system. For tight deadlines when the time-redundancy system can tolerate no faults, the proposed system preserves its fault-tolerance but with about 32% more energy consumption.","PeriodicalId":300268,"journal":{"name":"International Conference on Hardware/Software Codesign and System Synthesis","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"64","resultStr":"{\"title\":\"A standby-sparing technique with low energy-overhead for fault-tolerant hard real-time systems\",\"authors\":\"A. Ejlali, B. Al-Hashimi, P. Eles\",\"doi\":\"10.1145/1629435.1629463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Time redundancy (rollback-recovery) and hardware redundancy are commonly used in real-time systems to achieve fault tolerance. From an energy consumption point of view, time redundancy is generally more preferable than hardware redundancy. However, hard real-time systems often use hardware redundancy to meet high reliability requirements of safety-critical applications. In this paper we propose a hardware-redundancy technique with low energy-overhead for hard real-time systems. The proposed technique is based on standby-sparing, where the system is composed of a primary unit and a spare. Through analytical models, we have developed an online energy-management method which uses a slack reclamation scheme to reduce the energy consumption of both the primary and spare units. In this method, dynamic voltage scaling (DVS) is used for the primary unit and dynamic power management (DPM) is used for the spare. We conducted several experiments to compare the proposed system with a fault-tolerant real-time system which uses time redundancy for fault tolerance and DVS with slack reclamation for low energy consumption. The results show that for relaxed time constraints, the proposed system provides up to 24% energy saving as compared to the time-redundancy system. For tight deadlines when the time-redundancy system can tolerate no faults, the proposed system preserves its fault-tolerance but with about 32% more energy consumption.\",\"PeriodicalId\":300268,\"journal\":{\"name\":\"International Conference on Hardware/Software Codesign and System Synthesis\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"64\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Hardware/Software Codesign and System Synthesis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1629435.1629463\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Hardware/Software Codesign and System Synthesis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1629435.1629463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 64

摘要

时间冗余(回滚恢复)和硬件冗余在实时系统中常用来实现容错。从能耗的角度来看,时间冗余通常比硬件冗余更可取。然而,硬实时系统通常使用硬件冗余来满足安全关键应用的高可靠性要求。本文针对硬实时系统提出了一种低能耗的硬件冗余技术。提出的技术是基于备用备用的,其中系统由一个主单元和一个备用单元组成。通过分析模型,提出了一种在线能量管理方法,该方法采用闲置回收方案来降低主机组和备用机组的能耗。在这种方法中,主机组使用动态电压缩放(DVS),备用机组使用动态电源管理(DPM)。我们进行了几个实验,将所提出的系统与容错实时系统进行比较,容错实时系统使用时间冗余来容错,分布式交换机使用松弛回收来降低能耗。结果表明,在宽松的时间约束下,与时间冗余系统相比,该系统可节省24%的能量。在时间冗余系统不能容错的情况下,系统保持了容错性,但能耗增加了32%左右。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A standby-sparing technique with low energy-overhead for fault-tolerant hard real-time systems
Time redundancy (rollback-recovery) and hardware redundancy are commonly used in real-time systems to achieve fault tolerance. From an energy consumption point of view, time redundancy is generally more preferable than hardware redundancy. However, hard real-time systems often use hardware redundancy to meet high reliability requirements of safety-critical applications. In this paper we propose a hardware-redundancy technique with low energy-overhead for hard real-time systems. The proposed technique is based on standby-sparing, where the system is composed of a primary unit and a spare. Through analytical models, we have developed an online energy-management method which uses a slack reclamation scheme to reduce the energy consumption of both the primary and spare units. In this method, dynamic voltage scaling (DVS) is used for the primary unit and dynamic power management (DPM) is used for the spare. We conducted several experiments to compare the proposed system with a fault-tolerant real-time system which uses time redundancy for fault tolerance and DVS with slack reclamation for low energy consumption. The results show that for relaxed time constraints, the proposed system provides up to 24% energy saving as compared to the time-redundancy system. For tight deadlines when the time-redundancy system can tolerate no faults, the proposed system preserves its fault-tolerance but with about 32% more energy consumption.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信