汉堡矢量

B. Cantor
{"title":"汉堡矢量","authors":"B. Cantor","doi":"10.1093/oso/9780198851875.003.0011","DOIUrl":null,"url":null,"abstract":"When a material is stretched beyond its elastic limit, the atoms and molecules begin to slide over each other. This is called plasticity, and is dominated by the motion of defects in the crystal structure of the material, notably line defects called dislocations. The structure and magnitude of a dislocation is defined by its Burgers vector, which is a topological constant for a given dislocation line in a given material, so there is an effective Burgers equation: b = constant. This chapter describes: the structure of edge; screw and mixed dislocations and their associated line energy; the way in which dislocations are generated and interact under stress, leading to the yield point, work hardening and a permanent set in the material; and the use during manufacturing of deformation processing, annealing, recovery and recrystallisation. Jan Burgers’ early life in Arnhem at the beginning of the 20th century is described, as are: his time as a student with the charismatic but depressive Paul Ehrenfest, who later committed suicide; his appointment as the first Professor of Aerodynamics at Technische Universiteit Delft at a time of massive growth in the aviation industry; his contributions to aerodynamic and hydrodynamic flow as well as major Dutch engineering projects such as the Zuiderzee dams and the Maas river tunnel; his growing disaffection with the commercialisation of science and its use in warfare; and his philosophical dalliance with Soviet communism and then American capitalism.","PeriodicalId":227024,"journal":{"name":"The Equations of Materials","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Burgers Vector\",\"authors\":\"B. Cantor\",\"doi\":\"10.1093/oso/9780198851875.003.0011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When a material is stretched beyond its elastic limit, the atoms and molecules begin to slide over each other. This is called plasticity, and is dominated by the motion of defects in the crystal structure of the material, notably line defects called dislocations. The structure and magnitude of a dislocation is defined by its Burgers vector, which is a topological constant for a given dislocation line in a given material, so there is an effective Burgers equation: b = constant. This chapter describes: the structure of edge; screw and mixed dislocations and their associated line energy; the way in which dislocations are generated and interact under stress, leading to the yield point, work hardening and a permanent set in the material; and the use during manufacturing of deformation processing, annealing, recovery and recrystallisation. Jan Burgers’ early life in Arnhem at the beginning of the 20th century is described, as are: his time as a student with the charismatic but depressive Paul Ehrenfest, who later committed suicide; his appointment as the first Professor of Aerodynamics at Technische Universiteit Delft at a time of massive growth in the aviation industry; his contributions to aerodynamic and hydrodynamic flow as well as major Dutch engineering projects such as the Zuiderzee dams and the Maas river tunnel; his growing disaffection with the commercialisation of science and its use in warfare; and his philosophical dalliance with Soviet communism and then American capitalism.\",\"PeriodicalId\":227024,\"journal\":{\"name\":\"The Equations of Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Equations of Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/oso/9780198851875.003.0011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Equations of Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780198851875.003.0011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

当物质被拉伸超过其弹性极限时,原子和分子就开始相互滑动。这被称为塑性,主要是由材料晶体结构中缺陷的运动决定的,尤其是被称为位错的线缺陷。位错的结构和大小由其Burgers向量定义,该向量是给定材料中给定位错线的拓扑常数,因此有一个有效的Burgers方程:b =常数。本章主要介绍:边的结构;螺旋位错和混合位错及其相关的线能;位错在应力作用下产生和相互作用的方式,导致屈服点、加工硬化和材料的永久凝固;并在制造过程中使用变形处理、退火、恢复和再结晶。20世纪初,简·伯格在阿纳姆的早期生活被描述为:他与魅力十足但抑郁的保罗·埃伦费斯特(Paul Ehrenfest)一起学习,后者后来自杀了;他被任命为代尔夫特工业大学的第一位空气动力学教授,当时航空业正在迅猛发展;他对空气动力和水动力流动的贡献,以及荷兰的主要工程项目,如Zuiderzee水坝和Maas河隧道;他对科学商业化及其在战争中的应用越来越不满;以及他在哲学上对苏联共产主义和后来的美国资本主义的玩弄。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Burgers Vector
When a material is stretched beyond its elastic limit, the atoms and molecules begin to slide over each other. This is called plasticity, and is dominated by the motion of defects in the crystal structure of the material, notably line defects called dislocations. The structure and magnitude of a dislocation is defined by its Burgers vector, which is a topological constant for a given dislocation line in a given material, so there is an effective Burgers equation: b = constant. This chapter describes: the structure of edge; screw and mixed dislocations and their associated line energy; the way in which dislocations are generated and interact under stress, leading to the yield point, work hardening and a permanent set in the material; and the use during manufacturing of deformation processing, annealing, recovery and recrystallisation. Jan Burgers’ early life in Arnhem at the beginning of the 20th century is described, as are: his time as a student with the charismatic but depressive Paul Ehrenfest, who later committed suicide; his appointment as the first Professor of Aerodynamics at Technische Universiteit Delft at a time of massive growth in the aviation industry; his contributions to aerodynamic and hydrodynamic flow as well as major Dutch engineering projects such as the Zuiderzee dams and the Maas river tunnel; his growing disaffection with the commercialisation of science and its use in warfare; and his philosophical dalliance with Soviet communism and then American capitalism.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信