多目标进化算法设计:在流水车间调度问题中的应用

M. Basseur, Franck Seynhaeve, E. Talbi
{"title":"多目标进化算法设计:在流水车间调度问题中的应用","authors":"M. Basseur, Franck Seynhaeve, E. Talbi","doi":"10.1109/CEC.2002.1004405","DOIUrl":null,"url":null,"abstract":"Multi-objective optimization using evolutionary algorithms has been extensively studied in the literature. We propose formal methods to solve problems appearing frequently in the design of such algorithms. To evaluate the effectiveness of the introduced mechanisms, we apply them to the flow-shop scheduling problem. We propose a dynamic mutation Pareto genetic algorithm (GA) in which different genetic operators are used simultaneously in an adaptive manner, taking into account the history of the search. We present a diversification mechanism which combines sharing in the objective space as well as in the decision space, in which the size of the niche is automatically calculated. We also propose a hybrid approach which combines the Pareto GA with local search. Finally, we propose two performance indicators to evaluate the effectiveness of the introduced mechanisms.","PeriodicalId":184547,"journal":{"name":"Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"72","resultStr":"{\"title\":\"Design of multi-objective evolutionary algorithms: application to the flow-shop scheduling problem\",\"authors\":\"M. Basseur, Franck Seynhaeve, E. Talbi\",\"doi\":\"10.1109/CEC.2002.1004405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-objective optimization using evolutionary algorithms has been extensively studied in the literature. We propose formal methods to solve problems appearing frequently in the design of such algorithms. To evaluate the effectiveness of the introduced mechanisms, we apply them to the flow-shop scheduling problem. We propose a dynamic mutation Pareto genetic algorithm (GA) in which different genetic operators are used simultaneously in an adaptive manner, taking into account the history of the search. We present a diversification mechanism which combines sharing in the objective space as well as in the decision space, in which the size of the niche is automatically calculated. We also propose a hybrid approach which combines the Pareto GA with local search. Finally, we propose two performance indicators to evaluate the effectiveness of the introduced mechanisms.\",\"PeriodicalId\":184547,\"journal\":{\"name\":\"Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"72\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2002.1004405\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2002.1004405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 72

摘要

使用进化算法的多目标优化在文献中得到了广泛的研究。我们提出了形式化的方法来解决这类算法设计中经常出现的问题。为了评估所引入的机制的有效性,我们将其应用于流水车间调度问题。本文提出了一种动态变异Pareto遗传算法(GA),该算法在考虑搜索历史的情况下,自适应地同时使用不同的遗传算子。提出了一种目标空间和决策空间共享相结合的多样化机制,自动计算生态位的大小。我们还提出了一种将Pareto遗传算法与局部搜索相结合的混合方法。最后,我们提出了两个绩效指标来评估所引入机制的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design of multi-objective evolutionary algorithms: application to the flow-shop scheduling problem
Multi-objective optimization using evolutionary algorithms has been extensively studied in the literature. We propose formal methods to solve problems appearing frequently in the design of such algorithms. To evaluate the effectiveness of the introduced mechanisms, we apply them to the flow-shop scheduling problem. We propose a dynamic mutation Pareto genetic algorithm (GA) in which different genetic operators are used simultaneously in an adaptive manner, taking into account the history of the search. We present a diversification mechanism which combines sharing in the objective space as well as in the decision space, in which the size of the niche is automatically calculated. We also propose a hybrid approach which combines the Pareto GA with local search. Finally, we propose two performance indicators to evaluate the effectiveness of the introduced mechanisms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信