{"title":"糖及其化合物的空间模型","authors":"G. Zhizhin","doi":"10.4018/IJARB.2021070102","DOIUrl":null,"url":null,"abstract":"The images of saccharide and polysaccharide molecules in spaces of various dimensions are considered. A method has been developed for obtaining simplified three-dimensional images of sugar molecules and their chains based on their images in spaces of higher dimensions. It was found that three-dimensional images of furanose and pyranose molecules fundamentally differ from each other to form convex and, accordingly, non-convex bodies. This leads to fundamental differences in the structure of polysaccharides from these molecules.","PeriodicalId":350020,"journal":{"name":"International Journal of Applied Research in Bioinformatics","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatial Models of Sugars and Their Compounds\",\"authors\":\"G. Zhizhin\",\"doi\":\"10.4018/IJARB.2021070102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The images of saccharide and polysaccharide molecules in spaces of various dimensions are considered. A method has been developed for obtaining simplified three-dimensional images of sugar molecules and their chains based on their images in spaces of higher dimensions. It was found that three-dimensional images of furanose and pyranose molecules fundamentally differ from each other to form convex and, accordingly, non-convex bodies. This leads to fundamental differences in the structure of polysaccharides from these molecules.\",\"PeriodicalId\":350020,\"journal\":{\"name\":\"International Journal of Applied Research in Bioinformatics\",\"volume\":\"96 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Research in Bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJARB.2021070102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Research in Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJARB.2021070102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The images of saccharide and polysaccharide molecules in spaces of various dimensions are considered. A method has been developed for obtaining simplified three-dimensional images of sugar molecules and their chains based on their images in spaces of higher dimensions. It was found that three-dimensional images of furanose and pyranose molecules fundamentally differ from each other to form convex and, accordingly, non-convex bodies. This leads to fundamental differences in the structure of polysaccharides from these molecules.