Yaqin Zhou, Xiangyang Li, Fan Li, Min Liu, Zhongcheng Li, Zhiyuan Yin
{"title":"信道变量未知的多跳网络中的几乎最优信道接入","authors":"Yaqin Zhou, Xiangyang Li, Fan Li, Min Liu, Zhongcheng Li, Zhiyuan Yin","doi":"10.1109/ICDCS.2014.54","DOIUrl":null,"url":null,"abstract":"We consider the problem of online dynamic channel accessing in multi-hop cognitive radio networks. Previous works on online dynamic channel accessing mainly focus on single-hop networks that assume complete conflicts among all secondary users. In the multi-hop multi-channel network settings studied here, there is more general competition among different communication pairs. A simple application of models for single-hop case to multi-hop case with N nodes and M channels leads to exponential time/space complexity O (MN), and poor theoretical guarantee on throughput performance. We thus novelly formulate the problem as a linearly combinatorial multi-armed bandits (MAB) problem that involves a maximum weighted independent set (MWIS) problem with unknown weights. To efficiently address the problem, we propose a distributed channel access algorithm that can achieve 1/ρ of the optimum averaged throughput where each node has communication complexity O (r2+D) and space complexity O (m) in the learning process, and time complexity O (D mρr) in strategy decision process for an arbitrary wireless network. Here ρ = 1 + ε is the approximation ratio to MWIS for a local r-hop network with m <; N nodes, and D is the number of mini-rounds inside each round of strategy decision.","PeriodicalId":170186,"journal":{"name":"2014 IEEE 34th International Conference on Distributed Computing Systems","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Almost Optimal Channel Access in Multi-Hop Networks with Unknown Channel Variables\",\"authors\":\"Yaqin Zhou, Xiangyang Li, Fan Li, Min Liu, Zhongcheng Li, Zhiyuan Yin\",\"doi\":\"10.1109/ICDCS.2014.54\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of online dynamic channel accessing in multi-hop cognitive radio networks. Previous works on online dynamic channel accessing mainly focus on single-hop networks that assume complete conflicts among all secondary users. In the multi-hop multi-channel network settings studied here, there is more general competition among different communication pairs. A simple application of models for single-hop case to multi-hop case with N nodes and M channels leads to exponential time/space complexity O (MN), and poor theoretical guarantee on throughput performance. We thus novelly formulate the problem as a linearly combinatorial multi-armed bandits (MAB) problem that involves a maximum weighted independent set (MWIS) problem with unknown weights. To efficiently address the problem, we propose a distributed channel access algorithm that can achieve 1/ρ of the optimum averaged throughput where each node has communication complexity O (r2+D) and space complexity O (m) in the learning process, and time complexity O (D mρr) in strategy decision process for an arbitrary wireless network. Here ρ = 1 + ε is the approximation ratio to MWIS for a local r-hop network with m <; N nodes, and D is the number of mini-rounds inside each round of strategy decision.\",\"PeriodicalId\":170186,\"journal\":{\"name\":\"2014 IEEE 34th International Conference on Distributed Computing Systems\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 34th International Conference on Distributed Computing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDCS.2014.54\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 34th International Conference on Distributed Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCS.2014.54","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Almost Optimal Channel Access in Multi-Hop Networks with Unknown Channel Variables
We consider the problem of online dynamic channel accessing in multi-hop cognitive radio networks. Previous works on online dynamic channel accessing mainly focus on single-hop networks that assume complete conflicts among all secondary users. In the multi-hop multi-channel network settings studied here, there is more general competition among different communication pairs. A simple application of models for single-hop case to multi-hop case with N nodes and M channels leads to exponential time/space complexity O (MN), and poor theoretical guarantee on throughput performance. We thus novelly formulate the problem as a linearly combinatorial multi-armed bandits (MAB) problem that involves a maximum weighted independent set (MWIS) problem with unknown weights. To efficiently address the problem, we propose a distributed channel access algorithm that can achieve 1/ρ of the optimum averaged throughput where each node has communication complexity O (r2+D) and space complexity O (m) in the learning process, and time complexity O (D mρr) in strategy decision process for an arbitrary wireless network. Here ρ = 1 + ε is the approximation ratio to MWIS for a local r-hop network with m <; N nodes, and D is the number of mini-rounds inside each round of strategy decision.