在非常大的矩形不相似数据簇的可视化

L. Park, J. Bezdek, C. Leckie
{"title":"在非常大的矩形不相似数据簇的可视化","authors":"L. Park, J. Bezdek, C. Leckie","doi":"10.1109/ICARA.2000.4803948","DOIUrl":null,"url":null,"abstract":"D is an m×n matrix of pairwise dissimilarities between m row objects Or and n column objects Oc, which, taken together, comprise m+n objects O = [o<inf>1</inf>,…o<inf>m</inf>,o<inf>m+1</inf>,…o<inf>m+n</inf>]. There are four clustering problems associated with O: (P1) amongst the row objects O<inf>r</inf>; (P2) amongst the column objects O<inf>c</inf>; (P3) amongst the union of the row and column objects O=O<inf>r</inf>∪O<inf>c</inf>; and (P4) amongst the union of the row and column objects that contain at least one object of each type (co-clusters). The coVAT algorithm, which builds images for visual assessment of clustering tendency for these problems, is limited to m×n ≈ O(10<sup>4</sup>×10<sup>4</sup>). We develop a scalable version of coVAT that approximates coVAT images when D is very large. Two examples are given to illustrate and evaluate the new method.","PeriodicalId":435769,"journal":{"name":"2009 4th International Conference on Autonomous Robots and Agents","volume":"126 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Visualization of clusters in very large rectangular dissimilarity data\",\"authors\":\"L. Park, J. Bezdek, C. Leckie\",\"doi\":\"10.1109/ICARA.2000.4803948\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"D is an m×n matrix of pairwise dissimilarities between m row objects Or and n column objects Oc, which, taken together, comprise m+n objects O = [o<inf>1</inf>,…o<inf>m</inf>,o<inf>m+1</inf>,…o<inf>m+n</inf>]. There are four clustering problems associated with O: (P1) amongst the row objects O<inf>r</inf>; (P2) amongst the column objects O<inf>c</inf>; (P3) amongst the union of the row and column objects O=O<inf>r</inf>∪O<inf>c</inf>; and (P4) amongst the union of the row and column objects that contain at least one object of each type (co-clusters). The coVAT algorithm, which builds images for visual assessment of clustering tendency for these problems, is limited to m×n ≈ O(10<sup>4</sup>×10<sup>4</sup>). We develop a scalable version of coVAT that approximates coVAT images when D is very large. Two examples are given to illustrate and evaluate the new method.\",\"PeriodicalId\":435769,\"journal\":{\"name\":\"2009 4th International Conference on Autonomous Robots and Agents\",\"volume\":\"126 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 4th International Conference on Autonomous Robots and Agents\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICARA.2000.4803948\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 4th International Conference on Autonomous Robots and Agents","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARA.2000.4803948","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

D是m个行对象Or与n个列对象Oc之间的配对不相似度的m×n矩阵,它们合起来构成m+n个对象O =[01,…om,om+1,…om+n]。有四个与O相关的聚类问题:(P1)在行对象或之间;(P2)在列对象Oc之间;(P3)列和行对象的并集O=Or∪Oc;(P4)包含至少一个每种类型的对象(共簇)的行和列对象的联合。coVAT算法为这些问题的聚类倾向的视觉评估构建图像,仅限于m×n≈O(104×104)。我们开发了一个可扩展的coVAT版本,当D非常大时,它近似于coVAT图像。给出了两个实例来说明和评价新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Visualization of clusters in very large rectangular dissimilarity data
D is an m×n matrix of pairwise dissimilarities between m row objects Or and n column objects Oc, which, taken together, comprise m+n objects O = [o1,…om,om+1,…om+n]. There are four clustering problems associated with O: (P1) amongst the row objects Or; (P2) amongst the column objects Oc; (P3) amongst the union of the row and column objects O=Or∪Oc; and (P4) amongst the union of the row and column objects that contain at least one object of each type (co-clusters). The coVAT algorithm, which builds images for visual assessment of clustering tendency for these problems, is limited to m×n ≈ O(104×104). We develop a scalable version of coVAT that approximates coVAT images when D is very large. Two examples are given to illustrate and evaluate the new method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信