B. Algnamat, A. Abushattal, A. Kraishan, M. Alnaimat
{"title":"某些单线光谱双星的精确个体质量、理论稳定性和可居住性","authors":"B. Algnamat, A. Abushattal, A. Kraishan, M. Alnaimat","doi":"10.52526/25792776-22.69.2-223","DOIUrl":null,"url":null,"abstract":"Over the past few decades, some Spectroscopic Binaries (SBs) have been resolved using high-resolution techniques. Astrophysics is interested in this subject because we can obtain the mass of each component. By combining a visual solution with a complimentary one, such as the spectroscopic orbit or Edward method, we can determine the individual masses, semimajor axes, magnitudes, spectral types, radii, and temperatures. These provide the most probable physical parameters for some single-lined spectroscopic binaries. Then We can use these parameters to calculate theoretical the stability and habitability of the system. Additionally, we assume the composite spectrum, the apparent global magnitude, and the parallax (generally the Hipparcos, and recently the Gaia ). The next step is to obtain the spectrum for each components. The Edwards method will be used in this case. As soon as we have two spectra foe two single-lined spectroscopic binaries (HIP 754 and HIP 3841), we can determine each mass based on the magnitude difference, ∆m. For selected samples, we calculate the rest of the physical parameters needed to calculate the theoretical stability and habitability.","PeriodicalId":412578,"journal":{"name":"Communications of the Byurakan Astrophysical Observatory","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Precise Individual Masses and Theoretical Stability and Habitability of some Single-lined Spectroscopic Binaries\",\"authors\":\"B. Algnamat, A. Abushattal, A. Kraishan, M. Alnaimat\",\"doi\":\"10.52526/25792776-22.69.2-223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Over the past few decades, some Spectroscopic Binaries (SBs) have been resolved using high-resolution techniques. Astrophysics is interested in this subject because we can obtain the mass of each component. By combining a visual solution with a complimentary one, such as the spectroscopic orbit or Edward method, we can determine the individual masses, semimajor axes, magnitudes, spectral types, radii, and temperatures. These provide the most probable physical parameters for some single-lined spectroscopic binaries. Then We can use these parameters to calculate theoretical the stability and habitability of the system. Additionally, we assume the composite spectrum, the apparent global magnitude, and the parallax (generally the Hipparcos, and recently the Gaia ). The next step is to obtain the spectrum for each components. The Edwards method will be used in this case. As soon as we have two spectra foe two single-lined spectroscopic binaries (HIP 754 and HIP 3841), we can determine each mass based on the magnitude difference, ∆m. For selected samples, we calculate the rest of the physical parameters needed to calculate the theoretical stability and habitability.\",\"PeriodicalId\":412578,\"journal\":{\"name\":\"Communications of the Byurakan Astrophysical Observatory\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications of the Byurakan Astrophysical Observatory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52526/25792776-22.69.2-223\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications of the Byurakan Astrophysical Observatory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52526/25792776-22.69.2-223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Precise Individual Masses and Theoretical Stability and Habitability of some Single-lined Spectroscopic Binaries
Over the past few decades, some Spectroscopic Binaries (SBs) have been resolved using high-resolution techniques. Astrophysics is interested in this subject because we can obtain the mass of each component. By combining a visual solution with a complimentary one, such as the spectroscopic orbit or Edward method, we can determine the individual masses, semimajor axes, magnitudes, spectral types, radii, and temperatures. These provide the most probable physical parameters for some single-lined spectroscopic binaries. Then We can use these parameters to calculate theoretical the stability and habitability of the system. Additionally, we assume the composite spectrum, the apparent global magnitude, and the parallax (generally the Hipparcos, and recently the Gaia ). The next step is to obtain the spectrum for each components. The Edwards method will be used in this case. As soon as we have two spectra foe two single-lined spectroscopic binaries (HIP 754 and HIP 3841), we can determine each mass based on the magnitude difference, ∆m. For selected samples, we calculate the rest of the physical parameters needed to calculate the theoretical stability and habitability.