差分进化算法在无等待问题流水车间中的应用

D. Davendra, I. Zelinka, Magdalena Metlicka, R. Šenkeřík, Michal Pluhacek
{"title":"差分进化算法在无等待问题流水车间中的应用","authors":"D. Davendra, I. Zelinka, Magdalena Metlicka, R. Šenkeřík, Michal Pluhacek","doi":"10.1109/SDE.2014.7031536","DOIUrl":null,"url":null,"abstract":"This paper analyses the attributes of population dynamics of Differential Evolution algorithm using Complex Network Analysis tools. The population is visualised as an evolving complex network, which exhibits non-trivial features. Complex network attributes such as adjacency graph gives interconnectivity, centralities give the overview of convergence and stagnation, whereas cliques outlines the depth of interconnection and subgraphs within the population. The community graph plot gives an overview of the hierarchical grouping of the individuals in the population. These attributes give a clear description of the population during evaluation and can be utilised for adaptive population and parameter control.","PeriodicalId":224386,"journal":{"name":"2014 IEEE Symposium on Differential Evolution (SDE)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":"{\"title\":\"Complex network analysis of differential evolution algorithm applied to flowshop with no-wait problem\",\"authors\":\"D. Davendra, I. Zelinka, Magdalena Metlicka, R. Šenkeřík, Michal Pluhacek\",\"doi\":\"10.1109/SDE.2014.7031536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper analyses the attributes of population dynamics of Differential Evolution algorithm using Complex Network Analysis tools. The population is visualised as an evolving complex network, which exhibits non-trivial features. Complex network attributes such as adjacency graph gives interconnectivity, centralities give the overview of convergence and stagnation, whereas cliques outlines the depth of interconnection and subgraphs within the population. The community graph plot gives an overview of the hierarchical grouping of the individuals in the population. These attributes give a clear description of the population during evaluation and can be utilised for adaptive population and parameter control.\",\"PeriodicalId\":224386,\"journal\":{\"name\":\"2014 IEEE Symposium on Differential Evolution (SDE)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"42\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Symposium on Differential Evolution (SDE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SDE.2014.7031536\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Differential Evolution (SDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SDE.2014.7031536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

摘要

利用复杂网络分析工具对差分进化算法的种群动态属性进行了分析。人口被可视化为一个不断进化的复杂网络,它表现出非平凡的特征。复杂的网络属性,如邻接图给出了互联性,中心性给出了收敛和停滞的概述,而集团则概述了种群内互连和子图的深度。社区曲线图概述了种群中个体的分层分组。这些属性在评估过程中给出了种群的清晰描述,并可用于自适应种群和参数控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Complex network analysis of differential evolution algorithm applied to flowshop with no-wait problem
This paper analyses the attributes of population dynamics of Differential Evolution algorithm using Complex Network Analysis tools. The population is visualised as an evolving complex network, which exhibits non-trivial features. Complex network attributes such as adjacency graph gives interconnectivity, centralities give the overview of convergence and stagnation, whereas cliques outlines the depth of interconnection and subgraphs within the population. The community graph plot gives an overview of the hierarchical grouping of the individuals in the population. These attributes give a clear description of the population during evaluation and can be utilised for adaptive population and parameter control.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信