学习:棋局终局评估的有效方法

M. Samadi, Z. Azimifar, M. Z. Jahromi
{"title":"学习:棋局终局评估的有效方法","authors":"M. Samadi, Z. Azimifar, M. Z. Jahromi","doi":"10.1109/ICMLA.2007.48","DOIUrl":null,"url":null,"abstract":"Classical chess engines exhaustively explore moving possibilities from a chess board position to decide what the next best move to play is. The main component of a chess engine is board evaluation function. In this article we present a new method to solve chess endgames optimally without using brute-force algorithms or endgame tables. We propose to use artificial neural network to obtain better evaluation function for endgame positions. This method is specifically applied to three classical endgames: king-bishop-bishop-king, king-rook-king, and king-queen-king. The empirical results show that the proposed learning strategy is effective in wining against an opponent who offers its best survival defense using Nalimov database of best endgame moves.","PeriodicalId":448863,"journal":{"name":"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Learning: An Effective Approach in Endgame Chess Board Evaluation\",\"authors\":\"M. Samadi, Z. Azimifar, M. Z. Jahromi\",\"doi\":\"10.1109/ICMLA.2007.48\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classical chess engines exhaustively explore moving possibilities from a chess board position to decide what the next best move to play is. The main component of a chess engine is board evaluation function. In this article we present a new method to solve chess endgames optimally without using brute-force algorithms or endgame tables. We propose to use artificial neural network to obtain better evaluation function for endgame positions. This method is specifically applied to three classical endgames: king-bishop-bishop-king, king-rook-king, and king-queen-king. The empirical results show that the proposed learning strategy is effective in wining against an opponent who offers its best survival defense using Nalimov database of best endgame moves.\",\"PeriodicalId\":448863,\"journal\":{\"name\":\"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2007.48\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2007.48","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

经典的国际象棋引擎会从棋盘位置出发,探索各种移动的可能性,以决定下一步最好的走法。象棋引擎的主要组成部分是棋盘评估功能。在本文中,我们提出了一种不使用暴力算法或残局表的最优解象棋残局的新方法。我们提出使用人工神经网络来获得更好的终局位置评价函数。这种方法特别适用于三种经典的终局:国王-主教-国王、国王-国王、国王-王后-国王。实证结果表明,所提出的学习策略可以有效地战胜使用Nalimov最佳终局棋数据库提供最佳生存防御的对手。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning: An Effective Approach in Endgame Chess Board Evaluation
Classical chess engines exhaustively explore moving possibilities from a chess board position to decide what the next best move to play is. The main component of a chess engine is board evaluation function. In this article we present a new method to solve chess endgames optimally without using brute-force algorithms or endgame tables. We propose to use artificial neural network to obtain better evaluation function for endgame positions. This method is specifically applied to three classical endgames: king-bishop-bishop-king, king-rook-king, and king-queen-king. The empirical results show that the proposed learning strategy is effective in wining against an opponent who offers its best survival defense using Nalimov database of best endgame moves.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信