多任务网络上的变步长离散余弦变换扩散LMS

Ali Al-Mohammedi, Mohamed Deriche
{"title":"多任务网络上的变步长离散余弦变换扩散LMS","authors":"Ali Al-Mohammedi, Mohamed Deriche","doi":"10.1109/ICFSP.2018.8552066","DOIUrl":null,"url":null,"abstract":"In this paper, new variable step-size transform domain (VSSTD) algorithm is developed for Diffusion Least Mean Square (DLMS) multi-task networks with system identification application over Wireless Sensor Networks (WSNs). Our main contributions are the theoretical derivations of convergence analysis of Discrete Cosine Transform DLMS (DCTDLMS) algorithm considering adaptive combiners. Our simulations showed performance improvement compared to the traditional DLMS.","PeriodicalId":355222,"journal":{"name":"2018 4th International Conference on Frontiers of Signal Processing (ICFSP)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variable Step-Size Discrete Cosine Transform Diffusion LMS over Multi-task Networks\",\"authors\":\"Ali Al-Mohammedi, Mohamed Deriche\",\"doi\":\"10.1109/ICFSP.2018.8552066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, new variable step-size transform domain (VSSTD) algorithm is developed for Diffusion Least Mean Square (DLMS) multi-task networks with system identification application over Wireless Sensor Networks (WSNs). Our main contributions are the theoretical derivations of convergence analysis of Discrete Cosine Transform DLMS (DCTDLMS) algorithm considering adaptive combiners. Our simulations showed performance improvement compared to the traditional DLMS.\",\"PeriodicalId\":355222,\"journal\":{\"name\":\"2018 4th International Conference on Frontiers of Signal Processing (ICFSP)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 4th International Conference on Frontiers of Signal Processing (ICFSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICFSP.2018.8552066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 4th International Conference on Frontiers of Signal Processing (ICFSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICFSP.2018.8552066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对扩散最小均方(DLMS)多任务网络,提出了一种新的变步长变换域(VSSTD)算法,并将其应用于无线传感器网络(WSNs)的系统辨识。我们的主要贡献是考虑自适应组合的离散余弦变换DLMS (DCTDLMS)算法的收敛性分析的理论推导。我们的模拟显示,与传统DLMS相比,性能有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Variable Step-Size Discrete Cosine Transform Diffusion LMS over Multi-task Networks
In this paper, new variable step-size transform domain (VSSTD) algorithm is developed for Diffusion Least Mean Square (DLMS) multi-task networks with system identification application over Wireless Sensor Networks (WSNs). Our main contributions are the theoretical derivations of convergence analysis of Discrete Cosine Transform DLMS (DCTDLMS) algorithm considering adaptive combiners. Our simulations showed performance improvement compared to the traditional DLMS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信