ARdeep:基于深度强化学习的移动机器人网络自适应可靠路由协议

Jianmin Liu, Qi Wang, Chentao He, Yongjun Xu
{"title":"ARdeep:基于深度强化学习的移动机器人网络自适应可靠路由协议","authors":"Jianmin Liu, Qi Wang, Chentao He, Yongjun Xu","doi":"10.1109/LCN48667.2020.9314848","DOIUrl":null,"url":null,"abstract":"The mobile robotic network consisting multiple robotic devices such as unmanned aerial vehicles (UAVs) is a high-speed mobile wireless network. Existing mobile ad hoc protocols cannot meet the demands of mobile robotic networks due to intermittently connected links and frequent topology changes. This paper proposes a deep reinforcement learning based adaptive and reliable routing protocol, ARdeep. We formulate routing decisions with a Markov Decision Process model to automatically characterize the network variations. To better infer network environment, the link status is considered when making routing decisions. Simulation results demonstrate that ARdeep outperforms the existing good performing QGeo and conventional GPSR.","PeriodicalId":245782,"journal":{"name":"2020 IEEE 45th Conference on Local Computer Networks (LCN)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"ARdeep: Adaptive and Reliable Routing Protocol for Mobile Robotic Networks with Deep Reinforcement Learning\",\"authors\":\"Jianmin Liu, Qi Wang, Chentao He, Yongjun Xu\",\"doi\":\"10.1109/LCN48667.2020.9314848\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The mobile robotic network consisting multiple robotic devices such as unmanned aerial vehicles (UAVs) is a high-speed mobile wireless network. Existing mobile ad hoc protocols cannot meet the demands of mobile robotic networks due to intermittently connected links and frequent topology changes. This paper proposes a deep reinforcement learning based adaptive and reliable routing protocol, ARdeep. We formulate routing decisions with a Markov Decision Process model to automatically characterize the network variations. To better infer network environment, the link status is considered when making routing decisions. Simulation results demonstrate that ARdeep outperforms the existing good performing QGeo and conventional GPSR.\",\"PeriodicalId\":245782,\"journal\":{\"name\":\"2020 IEEE 45th Conference on Local Computer Networks (LCN)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 45th Conference on Local Computer Networks (LCN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LCN48667.2020.9314848\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 45th Conference on Local Computer Networks (LCN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LCN48667.2020.9314848","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

由无人机等多机器人设备组成的移动机器人网络是一种高速移动无线网络。现有的移动自组织协议由于链路的间歇性连接和频繁的拓扑变化而不能满足移动机器人网络的需求。本文提出了一种基于深度强化学习的自适应可靠路由协议ARdeep。我们使用马尔可夫决策过程模型来制定路由决策,以自动表征网络变化。为了更好地推断网络环境,在进行路由决策时考虑了链路状态。仿真结果表明,ARdeep的性能优于现有的QGeo和传统GPSR。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ARdeep: Adaptive and Reliable Routing Protocol for Mobile Robotic Networks with Deep Reinforcement Learning
The mobile robotic network consisting multiple robotic devices such as unmanned aerial vehicles (UAVs) is a high-speed mobile wireless network. Existing mobile ad hoc protocols cannot meet the demands of mobile robotic networks due to intermittently connected links and frequent topology changes. This paper proposes a deep reinforcement learning based adaptive and reliable routing protocol, ARdeep. We formulate routing decisions with a Markov Decision Process model to automatically characterize the network variations. To better infer network environment, the link status is considered when making routing decisions. Simulation results demonstrate that ARdeep outperforms the existing good performing QGeo and conventional GPSR.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信