具有有界不确定性的离散LPV系统的RPI集计算方法

Junbo Tan, Sorin Olaru, K. Ampountolas, J. M. Molina, Feng Xu
{"title":"具有有界不确定性的离散LPV系统的RPI集计算方法","authors":"Junbo Tan, Sorin Olaru, K. Ampountolas, J. M. Molina, Feng Xu","doi":"10.1109/ICCA.2019.8899945","DOIUrl":null,"url":null,"abstract":"Set invariance plays a fundamental role in the analysis and design of linear systems. This paper proposes a novel method for constructing robust positively invariant (RPI) sets for discrete-time linear parameter varying (LPV) systems. Starting from the stability assumption in the absence of disturbances, we aim to construct the RPI sets for parametric uncertain system. The existence condition of a common quadratic Lyapunov function for all vertices of the polytopic system is relaxed in the present study. Thus the proposed method enlarges the application field of RPI sets to LPV systems. A family of approximations of minimal robust positively invariant(mRPI) sets are obtained by using a shrinking procedure. Finally, the effect of scheduling variables on the size of the mRPI set is analyzed to obtain more accurate set characterization of the uncertain LPV system. A numerical example is used to illustrate the effectiveness of the proposed method.","PeriodicalId":130891,"journal":{"name":"2019 IEEE 15th International Conference on Control and Automation (ICCA)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Novel RPI Set Computation Method for Discrete-time LPV Systems with Bounded Uncertainties\",\"authors\":\"Junbo Tan, Sorin Olaru, K. Ampountolas, J. M. Molina, Feng Xu\",\"doi\":\"10.1109/ICCA.2019.8899945\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Set invariance plays a fundamental role in the analysis and design of linear systems. This paper proposes a novel method for constructing robust positively invariant (RPI) sets for discrete-time linear parameter varying (LPV) systems. Starting from the stability assumption in the absence of disturbances, we aim to construct the RPI sets for parametric uncertain system. The existence condition of a common quadratic Lyapunov function for all vertices of the polytopic system is relaxed in the present study. Thus the proposed method enlarges the application field of RPI sets to LPV systems. A family of approximations of minimal robust positively invariant(mRPI) sets are obtained by using a shrinking procedure. Finally, the effect of scheduling variables on the size of the mRPI set is analyzed to obtain more accurate set characterization of the uncertain LPV system. A numerical example is used to illustrate the effectiveness of the proposed method.\",\"PeriodicalId\":130891,\"journal\":{\"name\":\"2019 IEEE 15th International Conference on Control and Automation (ICCA)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 15th International Conference on Control and Automation (ICCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCA.2019.8899945\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 15th International Conference on Control and Automation (ICCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCA.2019.8899945","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

集合不变性在线性系统的分析和设计中起着重要的作用。提出了一种构造离散线性变参数系统鲁棒正不变集的新方法。从无扰动条件下的稳定性假设出发,构造参数不确定系统的RPI集。本文放宽了多面体系统所有顶点的公共二次Lyapunov函数的存在条件。从而将RPI集的应用范围扩大到LPV系统。利用收缩过程,得到了一类最小鲁棒正不变量集的近似。最后,分析了调度变量对mRPI集合大小的影响,得到了不确定LPV系统更精确的集合表征。算例验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel RPI Set Computation Method for Discrete-time LPV Systems with Bounded Uncertainties
Set invariance plays a fundamental role in the analysis and design of linear systems. This paper proposes a novel method for constructing robust positively invariant (RPI) sets for discrete-time linear parameter varying (LPV) systems. Starting from the stability assumption in the absence of disturbances, we aim to construct the RPI sets for parametric uncertain system. The existence condition of a common quadratic Lyapunov function for all vertices of the polytopic system is relaxed in the present study. Thus the proposed method enlarges the application field of RPI sets to LPV systems. A family of approximations of minimal robust positively invariant(mRPI) sets are obtained by using a shrinking procedure. Finally, the effect of scheduling variables on the size of the mRPI set is analyzed to obtain more accurate set characterization of the uncertain LPV system. A numerical example is used to illustrate the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信