石墨烯的润湿性梯度驱动气泡运动

Hongyang Yu, Yu Zhao, Jingjie Sha, Yunfei Chen
{"title":"石墨烯的润湿性梯度驱动气泡运动","authors":"Hongyang Yu, Yu Zhao, Jingjie Sha, Yunfei Chen","doi":"10.1115/imece2019-10886","DOIUrl":null,"url":null,"abstract":"\n The molecular dynamics (MD) method is employed to simulate thermal bubble nucleation processes confined in graphene nanochannels. It is found that nucleation sites depend strongly on the different solid-liquid interfacial properties in various systems. In this work, the thermal bubble nucleates on the graphene surface, on which the interaction between liquid molecules and channel wall is weak relatively. It is demonstrated that the hydrophobic surface would make thermal bubble to initiate easier. A conceptual design about surface wettability gradient was proposed, which can break the equilibrium state of a bubble and induce its unidirectional movement on the surface. Moreover, MD simulation showed that through a continuous gradient of surface wettability, the direction of movement is under control. These findings provide us with a method in device design for applications of self-controlling motion of bubble down to nanoscale and other wettability-enabled actuators.","PeriodicalId":229616,"journal":{"name":"Volume 7: Fluids Engineering","volume":"123 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wettability Gradients on Graphene to Drive Bubble Motion\",\"authors\":\"Hongyang Yu, Yu Zhao, Jingjie Sha, Yunfei Chen\",\"doi\":\"10.1115/imece2019-10886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The molecular dynamics (MD) method is employed to simulate thermal bubble nucleation processes confined in graphene nanochannels. It is found that nucleation sites depend strongly on the different solid-liquid interfacial properties in various systems. In this work, the thermal bubble nucleates on the graphene surface, on which the interaction between liquid molecules and channel wall is weak relatively. It is demonstrated that the hydrophobic surface would make thermal bubble to initiate easier. A conceptual design about surface wettability gradient was proposed, which can break the equilibrium state of a bubble and induce its unidirectional movement on the surface. Moreover, MD simulation showed that through a continuous gradient of surface wettability, the direction of movement is under control. These findings provide us with a method in device design for applications of self-controlling motion of bubble down to nanoscale and other wettability-enabled actuators.\",\"PeriodicalId\":229616,\"journal\":{\"name\":\"Volume 7: Fluids Engineering\",\"volume\":\"123 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 7: Fluids Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2019-10886\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 7: Fluids Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2019-10886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

采用分子动力学方法模拟了石墨烯纳米通道内的热泡成核过程。研究发现,在不同的体系中,成核位置强烈地依赖于不同的固液界面性质。在这项工作中,热泡在石墨烯表面成核,液体分子与通道壁的相互作用相对较弱。结果表明,疏水表面使热泡更容易产生。提出了一种表面润湿性梯度的概念设计,它可以打破气泡的平衡状态,引起气泡在表面上的单向运动。此外,MD模拟表明,通过表面润湿性的连续梯度,运动方向受到控制。这些发现为我们提供了一种用于自控制气泡运动至纳米级和其他可润湿性致动器应用的装置设计方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wettability Gradients on Graphene to Drive Bubble Motion
The molecular dynamics (MD) method is employed to simulate thermal bubble nucleation processes confined in graphene nanochannels. It is found that nucleation sites depend strongly on the different solid-liquid interfacial properties in various systems. In this work, the thermal bubble nucleates on the graphene surface, on which the interaction between liquid molecules and channel wall is weak relatively. It is demonstrated that the hydrophobic surface would make thermal bubble to initiate easier. A conceptual design about surface wettability gradient was proposed, which can break the equilibrium state of a bubble and induce its unidirectional movement on the surface. Moreover, MD simulation showed that through a continuous gradient of surface wettability, the direction of movement is under control. These findings provide us with a method in device design for applications of self-controlling motion of bubble down to nanoscale and other wettability-enabled actuators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信