使用混合遗传算法的索引跟踪

Roland Jeurissen, J. V. D. Berg
{"title":"使用混合遗传算法的索引跟踪","authors":"Roland Jeurissen, J. V. D. Berg","doi":"10.1109/CIMA.2005.1662364","DOIUrl":null,"url":null,"abstract":"Assuming the market is efficient, an obvious portfolio management strategy is passive where the challenge is to track a certain benchmark like a stock index. The goal of the passive strategy is to achieve equal returns and risks. In this paper, we investigate an approach for tracking the Dutch AEX index where an optimal tracking portfolio (consisting of a weighted subset of stock funds) is determined. The optimal weights of a portfolio are found by minimizing the tracking error for a set of historical returns and covariances. The overall optimal portfolio is found using a hybrid genetic algorithm where the fitness function of each chromosome (possible subset of stocks) equals the minimal tracking error achievable. We show the experimental setup and the simulation results, including the out-of-sample performance of the optimal tracking portfolio found","PeriodicalId":306045,"journal":{"name":"2005 ICSC Congress on Computational Intelligence Methods and Applications","volume":"123 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Index tracking using a hybrid genetic algorithm\",\"authors\":\"Roland Jeurissen, J. V. D. Berg\",\"doi\":\"10.1109/CIMA.2005.1662364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Assuming the market is efficient, an obvious portfolio management strategy is passive where the challenge is to track a certain benchmark like a stock index. The goal of the passive strategy is to achieve equal returns and risks. In this paper, we investigate an approach for tracking the Dutch AEX index where an optimal tracking portfolio (consisting of a weighted subset of stock funds) is determined. The optimal weights of a portfolio are found by minimizing the tracking error for a set of historical returns and covariances. The overall optimal portfolio is found using a hybrid genetic algorithm where the fitness function of each chromosome (possible subset of stocks) equals the minimal tracking error achievable. We show the experimental setup and the simulation results, including the out-of-sample performance of the optimal tracking portfolio found\",\"PeriodicalId\":306045,\"journal\":{\"name\":\"2005 ICSC Congress on Computational Intelligence Methods and Applications\",\"volume\":\"123 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 ICSC Congress on Computational Intelligence Methods and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIMA.2005.1662364\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 ICSC Congress on Computational Intelligence Methods and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIMA.2005.1662364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

假设市场是有效的,一个明显的投资组合管理策略是被动的,其中的挑战是跟踪某个基准,如股票指数。被动策略的目标是获得同等的收益和风险。在本文中,我们研究了一种跟踪荷兰AEX指数的方法,其中确定了最优跟踪投资组合(由股票基金的加权子集组成)。通过最小化一组历史收益和协方差的跟踪误差来找到投资组合的最优权重。采用混合遗传算法,使每条染色体(可能的股票子集)的适应度函数等于可实现的最小跟踪误差,从而找到总体最优投资组合。我们展示了实验设置和仿真结果,包括找到的最优跟踪组合的样本外性能
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Index tracking using a hybrid genetic algorithm
Assuming the market is efficient, an obvious portfolio management strategy is passive where the challenge is to track a certain benchmark like a stock index. The goal of the passive strategy is to achieve equal returns and risks. In this paper, we investigate an approach for tracking the Dutch AEX index where an optimal tracking portfolio (consisting of a weighted subset of stock funds) is determined. The optimal weights of a portfolio are found by minimizing the tracking error for a set of historical returns and covariances. The overall optimal portfolio is found using a hybrid genetic algorithm where the fitness function of each chromosome (possible subset of stocks) equals the minimal tracking error achievable. We show the experimental setup and the simulation results, including the out-of-sample performance of the optimal tracking portfolio found
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信