Where-what网络1:“Where”和“what”通过自上而下的连接相互帮助

Zhengping Ji, J. Weng, D. Prokhorov
{"title":"Where-what网络1:“Where”和“what”通过自上而下的连接相互帮助","authors":"Zhengping Ji, J. Weng, D. Prokhorov","doi":"10.1109/DEVLRN.2008.4640806","DOIUrl":null,"url":null,"abstract":"This paper describes the design of a single learning network that integrates both object location (ldquowhererdquo) and object type (ldquowhatrdquo), from images of learned objects in natural complex backgrounds. The in-place learning algorithm is used to develop the internal representation (including synaptic bottom-up and top-down weights of every neuron) in the network, such that every neuron is responsible for the learning of its own signal processing characteristics within its connected network environment, through interactions with other neurons in the same layer. In contrast with the previous fully connected MILN [13], the cells in each layer are locally connected in the network. Local analysis is achieved through multi-scale receptive fields, with increasing sizes of perception from earlier to later layers. The results of the experiments showed how one type of information (ldquowhererdquo or ldquowhatrdquo) assists the network to suppress irrelevant information from background (from ldquowhererdquo) or irrelevant object information (from ldquowhatrdquo), so as to give the required missing information (ldquowhererdquo or ldquowhatrdquo) in the motor output.","PeriodicalId":366099,"journal":{"name":"2008 7th IEEE International Conference on Development and Learning","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"63","resultStr":"{\"title\":\"Where-what network 1: “Where” and “what” assist each other through top-down connections\",\"authors\":\"Zhengping Ji, J. Weng, D. Prokhorov\",\"doi\":\"10.1109/DEVLRN.2008.4640806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the design of a single learning network that integrates both object location (ldquowhererdquo) and object type (ldquowhatrdquo), from images of learned objects in natural complex backgrounds. The in-place learning algorithm is used to develop the internal representation (including synaptic bottom-up and top-down weights of every neuron) in the network, such that every neuron is responsible for the learning of its own signal processing characteristics within its connected network environment, through interactions with other neurons in the same layer. In contrast with the previous fully connected MILN [13], the cells in each layer are locally connected in the network. Local analysis is achieved through multi-scale receptive fields, with increasing sizes of perception from earlier to later layers. The results of the experiments showed how one type of information (ldquowhererdquo or ldquowhatrdquo) assists the network to suppress irrelevant information from background (from ldquowhererdquo) or irrelevant object information (from ldquowhatrdquo), so as to give the required missing information (ldquowhererdquo or ldquowhatrdquo) in the motor output.\",\"PeriodicalId\":366099,\"journal\":{\"name\":\"2008 7th IEEE International Conference on Development and Learning\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"63\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 7th IEEE International Conference on Development and Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DEVLRN.2008.4640806\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 7th IEEE International Conference on Development and Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEVLRN.2008.4640806","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 63

摘要

本文描述了从自然复杂背景下的学习对象图像中集成对象位置(ldquowhererdquo)和对象类型(ldquowhatrdquo)的单个学习网络的设计。就地学习算法用于开发网络中的内部表示(包括每个神经元的突触自底向上和自顶向下的权重),这样每个神经元通过与同一层的其他神经元的相互作用,负责在其连接的网络环境中学习自己的信号处理特征。与之前的完全连接的MILN[13]相比,每层中的单元在网络中都是局部连接的。局部分析是通过多尺度接受野来实现的,感知的大小从早期到后期逐渐增加。实验结果显示了一种信息(ldquowhererdquo或ldquowhatrdquo)如何帮助网络抑制来自背景(来自ldquowhererdquo)或不相关的对象信息(来自ldquowhatrdquo),从而在电机输出中给出所需的缺失信息(ldquowhererdquo或ldquowhatrdquo)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Where-what network 1: “Where” and “what” assist each other through top-down connections
This paper describes the design of a single learning network that integrates both object location (ldquowhererdquo) and object type (ldquowhatrdquo), from images of learned objects in natural complex backgrounds. The in-place learning algorithm is used to develop the internal representation (including synaptic bottom-up and top-down weights of every neuron) in the network, such that every neuron is responsible for the learning of its own signal processing characteristics within its connected network environment, through interactions with other neurons in the same layer. In contrast with the previous fully connected MILN [13], the cells in each layer are locally connected in the network. Local analysis is achieved through multi-scale receptive fields, with increasing sizes of perception from earlier to later layers. The results of the experiments showed how one type of information (ldquowhererdquo or ldquowhatrdquo) assists the network to suppress irrelevant information from background (from ldquowhererdquo) or irrelevant object information (from ldquowhatrdquo), so as to give the required missing information (ldquowhererdquo or ldquowhatrdquo) in the motor output.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信