群作用的有理不变量和替换不变量

E. Hubert, I. Kogan
{"title":"群作用的有理不变量和替换不变量","authors":"E. Hubert, I. Kogan","doi":"10.1145/1113439.1113447","DOIUrl":null,"url":null,"abstract":"Group actions are ubiquitous in mathematics. They arise indiverse areas of applications, from classical mechanics to computervision. A classical but central problem is to compute a generatingset of invariants.\nWe consider a rational group action on the affine space andpropose a construction of a finite set of rational invariants and asimple algorithm to rewrite any rational invariant in terms ofthose generators. The construction comes into two variants bothconsisting in computing a reduced Gr&ouml;bner basis of apolynomial ideal. That polynomial ideal is of dimension zero in thesecond variant that relies on the choice of a cross-section, avariety that intersects generic orbits in a finite number ofpoints. A generic linear space of complementary dimension to theorbits can be chosen for cross-section.\nWhen the intersection of a generic orbit with the cross-sectionconsists of a single point, the rewriting of any rational invariantin terms of the computed generating set trivializes into areplacement. For general cross-sections we introduce a finite setof <i>replacement invariants</i> that are algebraicfunctions of the rational invariants. Any rational invariant can berewritten in terms of those by simple substitution.\nWe have therefore obtained an algebraic formulation of themoving frame construction of Fels and Olver [2], providing a bridgebetween the algebraic theory of polynomial and rational invariants[7, 1], and the differential-geometric theory of local smoothinvariants, [6].\nIn this abstract we formalize our main results in the case whereK is an algebraically closed field of characteristic zero. Severalexamples, both classical and original, are treated in theposter.\nTake an algebraic group <i>G</i> given by an unmixeddimensional ideal <i>G</i> in a polynomial ringK[&lambda;<inf>1</inf>,...,&lambda;<inf>&ell;</inf>].A rational action of the group <i>G</i> on<i>K</i><sup><i>n</i></sup> isgiven as the rational map:\n[EQUATION]\nwhere<i>h,g</i>1,...,<i>g</i><inf><i>n</i></inf>are polynomial functions inK[&lambda;<inf>1</inf>,...,&lambda;<inf>&ell;</inf>,<i>z</i><inf>1</inf>,...,<i>z</i><inf><i>n</i></inf>].\nAn element <i>p</i>/<i>q</i> &isin;<i>K</i>(<i>z</i>) is a <i>rationalinvariant</i> if<i>p</i>(&lambda;&middot;<i>z</i>)<i>q</i>(<i>z</i>)=<i>p</i>(<i>z</i>)<i>q</i>(&lambda;<i>z</i>)mod <i>G</i>. The set of rational invariants forms a(finitely generated) fieldK(<i>z</i>)<sup><i>G</i></sup>.\nA <i>cross-section of degree d</i> &gt; 0 is anirreducible affine variety <i>P</i> that intersectsgeneric orbits in exactly <i>d</i> simple points. Whengeneric orbits are of dimension <i>r</i> &gt; 0, ageneric linear affine space of codimension <i>r</i> isa cross-section.\nConsider a new set of variables <i>Z</i> =(<i>Z</i><inf>1</inf>,...,<i>Z</i><inf><i>n</i></inf>).The ideal (<i>Z</i> - &lambda; &middot;<i>z</i>) is the saturation by <i>h</i> ofthe ideal generated by the polynomials<i>h</i>(&lambda;,<i>z</i>)<i>Z</i><inf><i>i</i></inf>-<i>g</i><inf><i>i</i></inf>(&lambda;,<i>z</i>),1 &le; <i>i</i> &le; <i>n</i>. Wedefine the following two elimination ideals:\n[EQUATION]\nwhere <i>P</i> &sub; K[<i>Z</i>] isthe ideal of the chosen cross-section <i>P</i>. Thevariety of <i>O</i> inK<sup><i>n</i></sup> xK<sup><i>n</i></sup> is the closure of thegraph of the action. If we consider a projection on the secondcomponent K<sup><i>n</i></sup>, the fiberabove <i>P</i> is the variety of<i>I</i>.\nThe extensions<i>O</i><sup><i>e</i></sup> and<i>I</i><sup><i>e</i></sup> ofthe ideals <i>O</i> and <i>I</i> toK(<i>z</i>)[<i>Z</i>] are bothequidimensional of respective dimension <i>r</i> and 0.They are the heart of our construction. The following results arevalid for any term order chosen on <i>Z.</i>","PeriodicalId":314801,"journal":{"name":"SIGSAM Bull.","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rational and replacement invariants of a group action\",\"authors\":\"E. Hubert, I. Kogan\",\"doi\":\"10.1145/1113439.1113447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Group actions are ubiquitous in mathematics. They arise indiverse areas of applications, from classical mechanics to computervision. A classical but central problem is to compute a generatingset of invariants.\\nWe consider a rational group action on the affine space andpropose a construction of a finite set of rational invariants and asimple algorithm to rewrite any rational invariant in terms ofthose generators. The construction comes into two variants bothconsisting in computing a reduced Gr&ouml;bner basis of apolynomial ideal. That polynomial ideal is of dimension zero in thesecond variant that relies on the choice of a cross-section, avariety that intersects generic orbits in a finite number ofpoints. A generic linear space of complementary dimension to theorbits can be chosen for cross-section.\\nWhen the intersection of a generic orbit with the cross-sectionconsists of a single point, the rewriting of any rational invariantin terms of the computed generating set trivializes into areplacement. For general cross-sections we introduce a finite setof <i>replacement invariants</i> that are algebraicfunctions of the rational invariants. Any rational invariant can berewritten in terms of those by simple substitution.\\nWe have therefore obtained an algebraic formulation of themoving frame construction of Fels and Olver [2], providing a bridgebetween the algebraic theory of polynomial and rational invariants[7, 1], and the differential-geometric theory of local smoothinvariants, [6].\\nIn this abstract we formalize our main results in the case whereK is an algebraically closed field of characteristic zero. Severalexamples, both classical and original, are treated in theposter.\\nTake an algebraic group <i>G</i> given by an unmixeddimensional ideal <i>G</i> in a polynomial ringK[&lambda;<inf>1</inf>,...,&lambda;<inf>&ell;</inf>].A rational action of the group <i>G</i> on<i>K</i><sup><i>n</i></sup> isgiven as the rational map:\\n[EQUATION]\\nwhere<i>h,g</i>1,...,<i>g</i><inf><i>n</i></inf>are polynomial functions inK[&lambda;<inf>1</inf>,...,&lambda;<inf>&ell;</inf>,<i>z</i><inf>1</inf>,...,<i>z</i><inf><i>n</i></inf>].\\nAn element <i>p</i>/<i>q</i> &isin;<i>K</i>(<i>z</i>) is a <i>rationalinvariant</i> if<i>p</i>(&lambda;&middot;<i>z</i>)<i>q</i>(<i>z</i>)=<i>p</i>(<i>z</i>)<i>q</i>(&lambda;<i>z</i>)mod <i>G</i>. The set of rational invariants forms a(finitely generated) fieldK(<i>z</i>)<sup><i>G</i></sup>.\\nA <i>cross-section of degree d</i> &gt; 0 is anirreducible affine variety <i>P</i> that intersectsgeneric orbits in exactly <i>d</i> simple points. Whengeneric orbits are of dimension <i>r</i> &gt; 0, ageneric linear affine space of codimension <i>r</i> isa cross-section.\\nConsider a new set of variables <i>Z</i> =(<i>Z</i><inf>1</inf>,...,<i>Z</i><inf><i>n</i></inf>).The ideal (<i>Z</i> - &lambda; &middot;<i>z</i>) is the saturation by <i>h</i> ofthe ideal generated by the polynomials<i>h</i>(&lambda;,<i>z</i>)<i>Z</i><inf><i>i</i></inf>-<i>g</i><inf><i>i</i></inf>(&lambda;,<i>z</i>),1 &le; <i>i</i> &le; <i>n</i>. Wedefine the following two elimination ideals:\\n[EQUATION]\\nwhere <i>P</i> &sub; K[<i>Z</i>] isthe ideal of the chosen cross-section <i>P</i>. Thevariety of <i>O</i> inK<sup><i>n</i></sup> xK<sup><i>n</i></sup> is the closure of thegraph of the action. If we consider a projection on the secondcomponent K<sup><i>n</i></sup>, the fiberabove <i>P</i> is the variety of<i>I</i>.\\nThe extensions<i>O</i><sup><i>e</i></sup> and<i>I</i><sup><i>e</i></sup> ofthe ideals <i>O</i> and <i>I</i> toK(<i>z</i>)[<i>Z</i>] are bothequidimensional of respective dimension <i>r</i> and 0.They are the heart of our construction. The following results arevalid for any term order chosen on <i>Z.</i>\",\"PeriodicalId\":314801,\"journal\":{\"name\":\"SIGSAM Bull.\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIGSAM Bull.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1113439.1113447\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGSAM Bull.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1113439.1113447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

群体行为在数学中无处不在。它们出现在不同的应用领域,从经典力学到计算机视觉。一个经典但核心的问题是计算不变量的生成集。我们考虑了仿射空间上的一个有理群作用,提出了一个有限有理不变量集的构造,并给出了用这些生成器重写任意有理不变量的简单算法。该构造有两种变体,它们都包括计算多项式理想的约化格鲁布尔基。这个多项式理想在第二种变体中是零维的,它依赖于横截面的选择,这种变体在有限个数的点上与一般轨道相交。截面可以选择与理论位互补维数的一般线性空间。当一般轨道与截面的交点为单点时,计算生成集的任意有理不变量项的重写简化为置换。对于一般截面,我们引入一组有限的替换不变量,它们是有理不变量的代数函数。任何有理不变量都可以通过简单的替换来重写。因此,我们得到了Fels和Olver[2]的运动框架构造的代数公式,在多项式和有理不变量的代数理论[7,1]和局部光滑不变量的微分几何理论[6]之间提供了一个桥梁。在这个摘要中,我们形式化了ek是特征为零的代数闭域的主要结果。海报中有几个经典的和原创的例子。取多项式环k [λ1,…,λ& well;]中由非混维理想G给出的代数群G。给出群G onKn的一个理性作用:[方程]其中,g1,…,gnare多项式函数inK[λ1,…,λℓ,z1,…,zn]。元素p/q ∈K(z)是一个有理数不变量ifp(λ·z)q(z)=p(z)q(λz)mod G。有理数不变量的集合形成一个(有限生成的)域K(z)G。d >度的横截面;0是一个不可约仿射变体P,它与一般轨道相交于d个简单点上。当一般轨道的维数为r >0,余维为r的一般线性仿射空间为横截面。考虑一组新的变量Z =(Z1,…,Zn)。理想的(Z - &;·z)是由多项式(λ,z)Zi-gi(λ,z),1 ≤我勒;n.我们定义以下两个消去理想:[等式]其中P ⊂K[Z]是所选截面p的理想值,n的变化量xKn是作用图的闭包。如果我们考虑在第二分量Kn上的投影,则P以上的纤维是品种ofI。理想O和理想I toK(z)[z]的扩展soe和die都是各自维数r和0的准维数。他们是我们建设的核心。以下结果对Z上选择的任何项顺序都有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rational and replacement invariants of a group action
Group actions are ubiquitous in mathematics. They arise indiverse areas of applications, from classical mechanics to computervision. A classical but central problem is to compute a generatingset of invariants. We consider a rational group action on the affine space andpropose a construction of a finite set of rational invariants and asimple algorithm to rewrite any rational invariant in terms ofthose generators. The construction comes into two variants bothconsisting in computing a reduced Gröbner basis of apolynomial ideal. That polynomial ideal is of dimension zero in thesecond variant that relies on the choice of a cross-section, avariety that intersects generic orbits in a finite number ofpoints. A generic linear space of complementary dimension to theorbits can be chosen for cross-section. When the intersection of a generic orbit with the cross-sectionconsists of a single point, the rewriting of any rational invariantin terms of the computed generating set trivializes into areplacement. For general cross-sections we introduce a finite setof replacement invariants that are algebraicfunctions of the rational invariants. Any rational invariant can berewritten in terms of those by simple substitution. We have therefore obtained an algebraic formulation of themoving frame construction of Fels and Olver [2], providing a bridgebetween the algebraic theory of polynomial and rational invariants[7, 1], and the differential-geometric theory of local smoothinvariants, [6]. In this abstract we formalize our main results in the case whereK is an algebraically closed field of characteristic zero. Severalexamples, both classical and original, are treated in theposter. Take an algebraic group G given by an unmixeddimensional ideal G in a polynomial ringK[λ1,...,λ].A rational action of the group G onKn isgiven as the rational map: [EQUATION] whereh,g1,...,gnare polynomial functions inK[λ1,...,λ,z1,...,zn]. An element p/qK(z) is a rationalinvariant ifp(λ·z)q(z)=p(z)qz)mod G. The set of rational invariants forms a(finitely generated) fieldK(z)G. A cross-section of degree d > 0 is anirreducible affine variety P that intersectsgeneric orbits in exactly d simple points. Whengeneric orbits are of dimension r > 0, ageneric linear affine space of codimension r isa cross-section. Consider a new set of variables Z =(Z1,...,Zn).The ideal (Z - λ ·z) is the saturation by h ofthe ideal generated by the polynomialsh(λ,z)Zi-gi(λ,z),1 ≤ in. Wedefine the following two elimination ideals: [EQUATION] where P ⊂ K[Z] isthe ideal of the chosen cross-section P. Thevariety of O inKn xKn is the closure of thegraph of the action. If we consider a projection on the secondcomponent Kn, the fiberabove P is the variety ofI. The extensionsOe andIe ofthe ideals O and I toK(z)[Z] are bothequidimensional of respective dimension r and 0.They are the heart of our construction. The following results arevalid for any term order chosen on Z.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信