{"title":"应用数据挖掘技术对数据中心事件进行分析","authors":"Samuel Luna Martins, C. B. Bastos Filho","doi":"10.25286/repa.v7i2.2221","DOIUrl":null,"url":null,"abstract":"Esse trabalho tem como objetivo aplicar a técnica de agrupamento K-Modes a fim de auxiliar na identificação das causas-raízes dos problemas de disponibilidade e desempenho de serviços e sistemas hospedados em servidores e máquinas virtuais de um Data Center de uma organização. Os dados foram extraídos a partir da ferramenta de monitoramento chamada Zabbix relativos aos últimos 3 meses de incidentes. Foi realizado um procedimento de pré-processamento dos dados, extraindo os atributos mais relevantes, posteriormente foi aplicada a técnica chamada K-Modes juntamente com o valor de K mais adequado encontrado a partir do método Elbow. Após análise de dados, foi possível extrair regras de correlação e criar um plano estratégico a fim de mitigar a quantidade de incidentes recorrentes.","PeriodicalId":331078,"journal":{"name":"Revista de Engenharia e Pesquisa Aplicada","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Análise de Incidentes de Data Center através da Aplicação de Técnica de Mineração de Dados\",\"authors\":\"Samuel Luna Martins, C. B. Bastos Filho\",\"doi\":\"10.25286/repa.v7i2.2221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Esse trabalho tem como objetivo aplicar a técnica de agrupamento K-Modes a fim de auxiliar na identificação das causas-raízes dos problemas de disponibilidade e desempenho de serviços e sistemas hospedados em servidores e máquinas virtuais de um Data Center de uma organização. Os dados foram extraídos a partir da ferramenta de monitoramento chamada Zabbix relativos aos últimos 3 meses de incidentes. Foi realizado um procedimento de pré-processamento dos dados, extraindo os atributos mais relevantes, posteriormente foi aplicada a técnica chamada K-Modes juntamente com o valor de K mais adequado encontrado a partir do método Elbow. Após análise de dados, foi possível extrair regras de correlação e criar um plano estratégico a fim de mitigar a quantidade de incidentes recorrentes.\",\"PeriodicalId\":331078,\"journal\":{\"name\":\"Revista de Engenharia e Pesquisa Aplicada\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista de Engenharia e Pesquisa Aplicada\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25286/repa.v7i2.2221\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista de Engenharia e Pesquisa Aplicada","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25286/repa.v7i2.2221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Análise de Incidentes de Data Center através da Aplicação de Técnica de Mineração de Dados
Esse trabalho tem como objetivo aplicar a técnica de agrupamento K-Modes a fim de auxiliar na identificação das causas-raízes dos problemas de disponibilidade e desempenho de serviços e sistemas hospedados em servidores e máquinas virtuais de um Data Center de uma organização. Os dados foram extraídos a partir da ferramenta de monitoramento chamada Zabbix relativos aos últimos 3 meses de incidentes. Foi realizado um procedimento de pré-processamento dos dados, extraindo os atributos mais relevantes, posteriormente foi aplicada a técnica chamada K-Modes juntamente com o valor de K mais adequado encontrado a partir do método Elbow. Após análise de dados, foi possível extrair regras de correlação e criar um plano estratégico a fim de mitigar a quantidade de incidentes recorrentes.