黑箱多项式根的加速牛顿迭代

Anand Louis, S. Vempala
{"title":"黑箱多项式根的加速牛顿迭代","authors":"Anand Louis, S. Vempala","doi":"10.1109/FOCS.2016.83","DOIUrl":null,"url":null,"abstract":"We study the problem of computing the largest root of a real rooted polynomial p(x) to within error 'z' given only black box access to it, i.e., for any x, the algorithm can query an oracle for the value of p(x), but the algorithm is not allowed access to the coefficients of p(x). A folklore result for this problem is that the largest root of a polynomial can be computed in O(n log (1/z)) polynomial queries using the Newton iteration. We give a simple algorithm that queries the oracle at only O(log n log(1/z)) points, where n is the degree of the polynomial. Our algorithm is based on a novel approach for accelerating the Newton method by using higher derivatives.","PeriodicalId":414001,"journal":{"name":"2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Accelerated Newton Iteration for Roots of Black Box Polynomials\",\"authors\":\"Anand Louis, S. Vempala\",\"doi\":\"10.1109/FOCS.2016.83\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the problem of computing the largest root of a real rooted polynomial p(x) to within error 'z' given only black box access to it, i.e., for any x, the algorithm can query an oracle for the value of p(x), but the algorithm is not allowed access to the coefficients of p(x). A folklore result for this problem is that the largest root of a polynomial can be computed in O(n log (1/z)) polynomial queries using the Newton iteration. We give a simple algorithm that queries the oracle at only O(log n log(1/z)) points, where n is the degree of the polynomial. Our algorithm is based on a novel approach for accelerating the Newton method by using higher derivatives.\",\"PeriodicalId\":414001,\"journal\":{\"name\":\"2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS)\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FOCS.2016.83\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FOCS.2016.83","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

我们研究了在给定黑盒访问权限的情况下,计算实根多项式p(x)在误差'z'内的最大根的问题,即对于任意x,算法可以查询到p(x)的值,但算法不允许访问p(x)的系数。这个问题的一个普遍结果是,多项式的最大根可以在使用牛顿迭代的O(n log (1/z))个多项式查询中计算出来。我们给出了一个简单的算法,它只在O(log n log(1/z))个点上查询oracle,其中n是多项式的次数。我们的算法是基于一种新颖的方法,通过使用高导数加速牛顿法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accelerated Newton Iteration for Roots of Black Box Polynomials
We study the problem of computing the largest root of a real rooted polynomial p(x) to within error 'z' given only black box access to it, i.e., for any x, the algorithm can query an oracle for the value of p(x), but the algorithm is not allowed access to the coefficients of p(x). A folklore result for this problem is that the largest root of a polynomial can be computed in O(n log (1/z)) polynomial queries using the Newton iteration. We give a simple algorithm that queries the oracle at only O(log n log(1/z)) points, where n is the degree of the polynomial. Our algorithm is based on a novel approach for accelerating the Newton method by using higher derivatives.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信