一种基于模型约束的递归区域分割算法

W. Xiong, S. Ong, Joo-Hwee Lim
{"title":"一种基于模型约束的递归区域分割算法","authors":"W. Xiong, S. Ong, Joo-Hwee Lim","doi":"10.1109/ICPR.2010.1073","DOIUrl":null,"url":null,"abstract":"Decomposition of cells in clumps is a difficult segmentation task requiring region splitting techniques. Techniques that do not employ prior shape constraints usually fail to achieve accurate segmentation. Those using shape constraints are unable to cope with large clumps and occlusions. In this work, we propose a model-constrained region splitting algorithm for cell clump decomposition. We build the cell model using joint probability distribution of invariant shape features. The shape model, the contour smoothness and the gradient information along the cut are used to optimize the splitting in a recursive manner. The short cut rule is also adopted as a strategy to speed up the process. The algorithm performs well in validation experiments using 60 images with 4516 cells and 520 clumps.","PeriodicalId":309591,"journal":{"name":"2010 20th International Conference on Pattern Recognition","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Recursive and Model-Constrained Region Splitting Algorithm for Cell Clump Decomposition\",\"authors\":\"W. Xiong, S. Ong, Joo-Hwee Lim\",\"doi\":\"10.1109/ICPR.2010.1073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Decomposition of cells in clumps is a difficult segmentation task requiring region splitting techniques. Techniques that do not employ prior shape constraints usually fail to achieve accurate segmentation. Those using shape constraints are unable to cope with large clumps and occlusions. In this work, we propose a model-constrained region splitting algorithm for cell clump decomposition. We build the cell model using joint probability distribution of invariant shape features. The shape model, the contour smoothness and the gradient information along the cut are used to optimize the splitting in a recursive manner. The short cut rule is also adopted as a strategy to speed up the process. The algorithm performs well in validation experiments using 60 images with 4516 cells and 520 clumps.\",\"PeriodicalId\":309591,\"journal\":{\"name\":\"2010 20th International Conference on Pattern Recognition\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 20th International Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.2010.1073\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 20th International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2010.1073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

细胞团块分解是一项困难的分割任务,需要区域分割技术。不采用先验形状约束的技术通常无法实现准确的分割。使用形状约束的人无法处理大的团块和闭塞。在这项工作中,我们提出了一种模型约束区域分割算法用于细胞团块分解。我们利用不变形状特征的联合概率分布建立细胞模型。利用形状模型、轮廓平滑度和沿切口的梯度信息以递归方式优化分割。捷径规则也是一种加快流程的策略。在包含4516个细胞和520个团块的60幅图像的验证实验中,该算法表现良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Recursive and Model-Constrained Region Splitting Algorithm for Cell Clump Decomposition
Decomposition of cells in clumps is a difficult segmentation task requiring region splitting techniques. Techniques that do not employ prior shape constraints usually fail to achieve accurate segmentation. Those using shape constraints are unable to cope with large clumps and occlusions. In this work, we propose a model-constrained region splitting algorithm for cell clump decomposition. We build the cell model using joint probability distribution of invariant shape features. The shape model, the contour smoothness and the gradient information along the cut are used to optimize the splitting in a recursive manner. The short cut rule is also adopted as a strategy to speed up the process. The algorithm performs well in validation experiments using 60 images with 4516 cells and 520 clumps.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信