交互式视觉模式识别

G. Nagy, Jie Zou
{"title":"交互式视觉模式识别","authors":"G. Nagy, Jie Zou","doi":"10.1109/ICPR.2002.1048342","DOIUrl":null,"url":null,"abstract":"Computer Assisted Visual Interactive Recognition (CAVIAR) draws on sequential pattern recognition, image database, expert systems, pen computing, and digital camera technology. It is designed to recognize wildflowers and other families of similar objects more accurately than machine vision and faster than most laypersons. The novelty of the approach is that human perceptual ability is exploited through interaction with the image of the unknown object. The computer remembers the characteristics of all previously seen classes, suggests possible operator actions, and displays confidence scores based on already detected features. In one application, consisting of 80 test images of wildflowers, 10 laypersons averaged 80% recognition accuracy at 12 seconds per flower.","PeriodicalId":159502,"journal":{"name":"Object recognition supported by user interaction for service robots","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Interactive visual pattern recognition\",\"authors\":\"G. Nagy, Jie Zou\",\"doi\":\"10.1109/ICPR.2002.1048342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computer Assisted Visual Interactive Recognition (CAVIAR) draws on sequential pattern recognition, image database, expert systems, pen computing, and digital camera technology. It is designed to recognize wildflowers and other families of similar objects more accurately than machine vision and faster than most laypersons. The novelty of the approach is that human perceptual ability is exploited through interaction with the image of the unknown object. The computer remembers the characteristics of all previously seen classes, suggests possible operator actions, and displays confidence scores based on already detected features. In one application, consisting of 80 test images of wildflowers, 10 laypersons averaged 80% recognition accuracy at 12 seconds per flower.\",\"PeriodicalId\":159502,\"journal\":{\"name\":\"Object recognition supported by user interaction for service robots\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Object recognition supported by user interaction for service robots\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.2002.1048342\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Object recognition supported by user interaction for service robots","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2002.1048342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

计算机辅助视觉交互识别(CAVIAR)利用顺序模式识别、图像数据库、专家系统、笔式计算和数码相机技术。它被设计用来识别野花和其他类似的物体,比机器视觉更准确,比大多数外行人更快。该方法的新颖之处在于,人类的感知能力是通过与未知物体的图像交互来开发的。计算机会记住之前看到的所有类别的特征,建议可能的操作,并根据已经检测到的特征显示置信度分数。在一个由80张野花测试图像组成的应用程序中,10名外行人在每张花的12秒内平均识别准确率为80%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interactive visual pattern recognition
Computer Assisted Visual Interactive Recognition (CAVIAR) draws on sequential pattern recognition, image database, expert systems, pen computing, and digital camera technology. It is designed to recognize wildflowers and other families of similar objects more accurately than machine vision and faster than most laypersons. The novelty of the approach is that human perceptual ability is exploited through interaction with the image of the unknown object. The computer remembers the characteristics of all previously seen classes, suggests possible operator actions, and displays confidence scores based on already detected features. In one application, consisting of 80 test images of wildflowers, 10 laypersons averaged 80% recognition accuracy at 12 seconds per flower.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信