{"title":"一种考虑评级时间序列的协同过滤强化学习方法","authors":"Jungkyu Lee, B. Oh, Jihoon Yang","doi":"10.3745/KIPSTB.2012.19B.1.031","DOIUrl":null,"url":null,"abstract":"In recent years, there has been increasing interest in recommender systems which provide users with personalized suggestions for products or services. In particular, researches of collaborative filtering analyzing relations between users and items has become more active because of the Netflix Prize competition. This paper presents the reinforcement learning approach for collaborative filtering. By applying reinforcement learning techniques to the movie rating, we discovered the connection between a time sequence of past ratings and current ratings. For this, we first formulated the collaborative filtering problem as a Markov Decision Process. And then we trained the learning model which reflects the connection between the time sequence of past ratings and current ratings using Q-learning. The experimental results indicate that there is a significant effect on current ratings by the time sequence of past ratings.","PeriodicalId":122700,"journal":{"name":"The Kips Transactions:partb","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Reinforcement Learning Approach to Collaborative Filtering Considering Time-sequence of Ratings\",\"authors\":\"Jungkyu Lee, B. Oh, Jihoon Yang\",\"doi\":\"10.3745/KIPSTB.2012.19B.1.031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, there has been increasing interest in recommender systems which provide users with personalized suggestions for products or services. In particular, researches of collaborative filtering analyzing relations between users and items has become more active because of the Netflix Prize competition. This paper presents the reinforcement learning approach for collaborative filtering. By applying reinforcement learning techniques to the movie rating, we discovered the connection between a time sequence of past ratings and current ratings. For this, we first formulated the collaborative filtering problem as a Markov Decision Process. And then we trained the learning model which reflects the connection between the time sequence of past ratings and current ratings using Q-learning. The experimental results indicate that there is a significant effect on current ratings by the time sequence of past ratings.\",\"PeriodicalId\":122700,\"journal\":{\"name\":\"The Kips Transactions:partb\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Kips Transactions:partb\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3745/KIPSTB.2012.19B.1.031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Kips Transactions:partb","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3745/KIPSTB.2012.19B.1.031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Reinforcement Learning Approach to Collaborative Filtering Considering Time-sequence of Ratings
In recent years, there has been increasing interest in recommender systems which provide users with personalized suggestions for products or services. In particular, researches of collaborative filtering analyzing relations between users and items has become more active because of the Netflix Prize competition. This paper presents the reinforcement learning approach for collaborative filtering. By applying reinforcement learning techniques to the movie rating, we discovered the connection between a time sequence of past ratings and current ratings. For this, we first formulated the collaborative filtering problem as a Markov Decision Process. And then we trained the learning model which reflects the connection between the time sequence of past ratings and current ratings using Q-learning. The experimental results indicate that there is a significant effect on current ratings by the time sequence of past ratings.