通过选择性压缩和推测重用改进推测循环并行化

Santhosh Sharma Ananthramu, Deepak Majeti, S. Aggarwal, Mainak Chaudhuri
{"title":"通过选择性压缩和推测重用改进推测循环并行化","authors":"Santhosh Sharma Ananthramu, Deepak Majeti, S. Aggarwal, Mainak Chaudhuri","doi":"10.1145/1854273.1854343","DOIUrl":null,"url":null,"abstract":"Speculative parallelization is a powerful technique to parallelize loops with irregular data dependencies. In this poster, we present a value-based selective squash protocol and an optimistic speculation reuse technique that leverages an extended notion of silent stores. These optimizations focus on reducing the number of squashes due to dependency violations. Our proposed optimizations, when applied to loops selected from standard benchmark suites, demonstrate an average (geometric mean) 2.5x performance improvement. This improvement is attributed to a 94% success in speculation reuse and a 77% reduction in the number of squashed threads compared to an implementation that, in such cases of squashes, would have squashed all the successors starting from the oldest offending one.","PeriodicalId":422461,"journal":{"name":"2010 19th International Conference on Parallel Architectures and Compilation Techniques (PACT)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving speculative loop parallelization via selective squash and speculation reuse\",\"authors\":\"Santhosh Sharma Ananthramu, Deepak Majeti, S. Aggarwal, Mainak Chaudhuri\",\"doi\":\"10.1145/1854273.1854343\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Speculative parallelization is a powerful technique to parallelize loops with irregular data dependencies. In this poster, we present a value-based selective squash protocol and an optimistic speculation reuse technique that leverages an extended notion of silent stores. These optimizations focus on reducing the number of squashes due to dependency violations. Our proposed optimizations, when applied to loops selected from standard benchmark suites, demonstrate an average (geometric mean) 2.5x performance improvement. This improvement is attributed to a 94% success in speculation reuse and a 77% reduction in the number of squashed threads compared to an implementation that, in such cases of squashes, would have squashed all the successors starting from the oldest offending one.\",\"PeriodicalId\":422461,\"journal\":{\"name\":\"2010 19th International Conference on Parallel Architectures and Compilation Techniques (PACT)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 19th International Conference on Parallel Architectures and Compilation Techniques (PACT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1854273.1854343\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 19th International Conference on Parallel Architectures and Compilation Techniques (PACT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1854273.1854343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

推测并行化是一种强大的技术,可以并行化具有不规则数据依赖性的循环。在这张海报中,我们提出了一个基于值的选择性压缩协议和一个利用扩展的静默存储概念的乐观推测重用技术。这些优化的重点是减少由于依赖违反而导致的压缩次数。我们提出的优化,当应用于从标准基准套件中选择的循环时,显示出平均(几何平均)2.5倍的性能改进。这种改进归因于94%的投机重用成功率和77%的压缩线程数量减少,而在这种压缩情况下,实现将从最老的有问题的线程开始压缩所有后继线程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving speculative loop parallelization via selective squash and speculation reuse
Speculative parallelization is a powerful technique to parallelize loops with irregular data dependencies. In this poster, we present a value-based selective squash protocol and an optimistic speculation reuse technique that leverages an extended notion of silent stores. These optimizations focus on reducing the number of squashes due to dependency violations. Our proposed optimizations, when applied to loops selected from standard benchmark suites, demonstrate an average (geometric mean) 2.5x performance improvement. This improvement is attributed to a 94% success in speculation reuse and a 77% reduction in the number of squashed threads compared to an implementation that, in such cases of squashes, would have squashed all the successors starting from the oldest offending one.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信