车辆交通监控采用单摄像头和嵌入式系统

Rindra Wiska, M. Alhamidi, Novian Habibie, A. Wibisono, P. Mursanto, D. H. Ramdhan, M. F. Rachmadi, W. Jatmiko
{"title":"车辆交通监控采用单摄像头和嵌入式系统","authors":"Rindra Wiska, M. Alhamidi, Novian Habibie, A. Wibisono, P. Mursanto, D. H. Ramdhan, M. F. Rachmadi, W. Jatmiko","doi":"10.1109/ICACSIS.2016.7872806","DOIUrl":null,"url":null,"abstract":"Traffic congestion is a problem that often occurs in the big cities in Indonesia. It is caused by very rapid increase of vehicle. The offered solution is to monitor the traffic situation automatically. We implemented the method of detecting vehicle during night in four single board computers (SBC) that are: Raspberry Pi B+, Beagleboard Xm, Raspberry Pi 2 and Odroid XU4. Perfomance of Odroid XU4 exceed other single board computers in which the maximum fps obtained 30 frame per second(fps) and the maximum accuracy of vehicle detection reached 98 percent.","PeriodicalId":267924,"journal":{"name":"2016 International Conference on Advanced Computer Science and Information Systems (ICACSIS)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Vehicle traffic monitoring using single camera and embedded systems\",\"authors\":\"Rindra Wiska, M. Alhamidi, Novian Habibie, A. Wibisono, P. Mursanto, D. H. Ramdhan, M. F. Rachmadi, W. Jatmiko\",\"doi\":\"10.1109/ICACSIS.2016.7872806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traffic congestion is a problem that often occurs in the big cities in Indonesia. It is caused by very rapid increase of vehicle. The offered solution is to monitor the traffic situation automatically. We implemented the method of detecting vehicle during night in four single board computers (SBC) that are: Raspberry Pi B+, Beagleboard Xm, Raspberry Pi 2 and Odroid XU4. Perfomance of Odroid XU4 exceed other single board computers in which the maximum fps obtained 30 frame per second(fps) and the maximum accuracy of vehicle detection reached 98 percent.\",\"PeriodicalId\":267924,\"journal\":{\"name\":\"2016 International Conference on Advanced Computer Science and Information Systems (ICACSIS)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Advanced Computer Science and Information Systems (ICACSIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACSIS.2016.7872806\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Advanced Computer Science and Information Systems (ICACSIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACSIS.2016.7872806","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

交通拥堵是印尼大城市经常发生的问题。这是由车辆的快速增长造成的。提供的解决方案是自动监控交通状况。我们在Raspberry Pi B+, Beagleboard Xm, Raspberry Pi 2和Odroid XU4四个单板计算机(SBC)上实现了夜间车辆检测方法。Odroid XU4的性能超过了其他单板计算机,其最大fps达到每秒30帧(fps),车辆检测的最大精度达到98%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vehicle traffic monitoring using single camera and embedded systems
Traffic congestion is a problem that often occurs in the big cities in Indonesia. It is caused by very rapid increase of vehicle. The offered solution is to monitor the traffic situation automatically. We implemented the method of detecting vehicle during night in four single board computers (SBC) that are: Raspberry Pi B+, Beagleboard Xm, Raspberry Pi 2 and Odroid XU4. Perfomance of Odroid XU4 exceed other single board computers in which the maximum fps obtained 30 frame per second(fps) and the maximum accuracy of vehicle detection reached 98 percent.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信