{"title":"Arque:仿生学启发的人造尾巴,用于扩展固有的身体功能","authors":"Junichi Nabeshima, M. Y. Saraiji, K. Minamizawa","doi":"10.1145/3306214.3338573","DOIUrl":null,"url":null,"abstract":"For most mammals and vertebrate animals, tail plays an important role for their body providing variant functions to expand their mobility, or as a limb that allows manipulation and gripping. In this work, Arque, we propose an artificial biomimicry-inspired anthropomorphic tail to allow us alter our body momentum for assistive, and haptic feedback applications. The proposed tail consists of adjacent joints with a spring-based structure to handle shearing and tangential forces, and allow managing the length and weight of the target tail. The internal structure of the tail is driven by four pneumatic artificial muscles providing the actuation mechanism for the tail tip. Here we highlight potential applications for using such prosthetic tail as an extension of human body to provide active momentum alteration in balancing situations, or as a device to alter body momentum for full-body haptic feedback scenarios.","PeriodicalId":216038,"journal":{"name":"ACM SIGGRAPH 2019 Posters","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Arque: artificial biomimicry-inspired tail for extending innate body functions\",\"authors\":\"Junichi Nabeshima, M. Y. Saraiji, K. Minamizawa\",\"doi\":\"10.1145/3306214.3338573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For most mammals and vertebrate animals, tail plays an important role for their body providing variant functions to expand their mobility, or as a limb that allows manipulation and gripping. In this work, Arque, we propose an artificial biomimicry-inspired anthropomorphic tail to allow us alter our body momentum for assistive, and haptic feedback applications. The proposed tail consists of adjacent joints with a spring-based structure to handle shearing and tangential forces, and allow managing the length and weight of the target tail. The internal structure of the tail is driven by four pneumatic artificial muscles providing the actuation mechanism for the tail tip. Here we highlight potential applications for using such prosthetic tail as an extension of human body to provide active momentum alteration in balancing situations, or as a device to alter body momentum for full-body haptic feedback scenarios.\",\"PeriodicalId\":216038,\"journal\":{\"name\":\"ACM SIGGRAPH 2019 Posters\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM SIGGRAPH 2019 Posters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3306214.3338573\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGGRAPH 2019 Posters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3306214.3338573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Arque: artificial biomimicry-inspired tail for extending innate body functions
For most mammals and vertebrate animals, tail plays an important role for their body providing variant functions to expand their mobility, or as a limb that allows manipulation and gripping. In this work, Arque, we propose an artificial biomimicry-inspired anthropomorphic tail to allow us alter our body momentum for assistive, and haptic feedback applications. The proposed tail consists of adjacent joints with a spring-based structure to handle shearing and tangential forces, and allow managing the length and weight of the target tail. The internal structure of the tail is driven by four pneumatic artificial muscles providing the actuation mechanism for the tail tip. Here we highlight potential applications for using such prosthetic tail as an extension of human body to provide active momentum alteration in balancing situations, or as a device to alter body momentum for full-body haptic feedback scenarios.