Zhaoheng Ni, Yong Xu, Meng Yu, Bo Wu, Shi-Xiong Zhang, Dong Yu, Michael I. Mandel
{"title":"一种用于同时语音分离和去噪的改进神经波束形成器","authors":"Zhaoheng Ni, Yong Xu, Meng Yu, Bo Wu, Shi-Xiong Zhang, Dong Yu, Michael I. Mandel","doi":"10.1109/SLT48900.2021.9383528","DOIUrl":null,"url":null,"abstract":"This paper aims at eliminating the interfering speakers' speech, additive noise, and reverberation from the noisy multi-talker speech mixture that benefits automatic speech recognition (ASR) backend. While the recently proposed Weighted Power minimization Distortionless response (WPD) beamformer can perform separation and dereverberation simultaneously, the noise cancellation component still has the potential to progress. We propose an improved neural WPD beamformer called \"WPD++\" by an enhanced beamforming module in the conventional WPD and a multi-objective loss function for the joint training. The beamforming module is improved by utilizing the spatio-temporal correlation. A multi-objective loss, including the complex spectra domain scale-invariant signal-to-noise ratio (C-Si-SNR) and the magnitude domain mean square error (Mag-MSE), is properly designed to make multiple constraints on the enhanced speech and the desired power of the dry clean signal. Joint training is conducted to optimize the complex-valued mask estimator and the WPD++ beamformer in an end-to-end way. The results show that the proposed WPD++ outperforms several state-of-the-art beamformers on the enhanced speech quality and word error rate (WER) of ASR.","PeriodicalId":243211,"journal":{"name":"2021 IEEE Spoken Language Technology Workshop (SLT)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"WPD++: An Improved Neural Beamformer for Simultaneous Speech Separation and Dereverberation\",\"authors\":\"Zhaoheng Ni, Yong Xu, Meng Yu, Bo Wu, Shi-Xiong Zhang, Dong Yu, Michael I. Mandel\",\"doi\":\"10.1109/SLT48900.2021.9383528\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper aims at eliminating the interfering speakers' speech, additive noise, and reverberation from the noisy multi-talker speech mixture that benefits automatic speech recognition (ASR) backend. While the recently proposed Weighted Power minimization Distortionless response (WPD) beamformer can perform separation and dereverberation simultaneously, the noise cancellation component still has the potential to progress. We propose an improved neural WPD beamformer called \\\"WPD++\\\" by an enhanced beamforming module in the conventional WPD and a multi-objective loss function for the joint training. The beamforming module is improved by utilizing the spatio-temporal correlation. A multi-objective loss, including the complex spectra domain scale-invariant signal-to-noise ratio (C-Si-SNR) and the magnitude domain mean square error (Mag-MSE), is properly designed to make multiple constraints on the enhanced speech and the desired power of the dry clean signal. Joint training is conducted to optimize the complex-valued mask estimator and the WPD++ beamformer in an end-to-end way. The results show that the proposed WPD++ outperforms several state-of-the-art beamformers on the enhanced speech quality and word error rate (WER) of ASR.\",\"PeriodicalId\":243211,\"journal\":{\"name\":\"2021 IEEE Spoken Language Technology Workshop (SLT)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Spoken Language Technology Workshop (SLT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SLT48900.2021.9383528\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT48900.2021.9383528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
WPD++: An Improved Neural Beamformer for Simultaneous Speech Separation and Dereverberation
This paper aims at eliminating the interfering speakers' speech, additive noise, and reverberation from the noisy multi-talker speech mixture that benefits automatic speech recognition (ASR) backend. While the recently proposed Weighted Power minimization Distortionless response (WPD) beamformer can perform separation and dereverberation simultaneously, the noise cancellation component still has the potential to progress. We propose an improved neural WPD beamformer called "WPD++" by an enhanced beamforming module in the conventional WPD and a multi-objective loss function for the joint training. The beamforming module is improved by utilizing the spatio-temporal correlation. A multi-objective loss, including the complex spectra domain scale-invariant signal-to-noise ratio (C-Si-SNR) and the magnitude domain mean square error (Mag-MSE), is properly designed to make multiple constraints on the enhanced speech and the desired power of the dry clean signal. Joint training is conducted to optimize the complex-valued mask estimator and the WPD++ beamformer in an end-to-end way. The results show that the proposed WPD++ outperforms several state-of-the-art beamformers on the enhanced speech quality and word error rate (WER) of ASR.