具有自由边界的两种不混溶液体的分层运动

E. Lemeshkova
{"title":"具有自由边界的两种不混溶液体的分层运动","authors":"E. Lemeshkova","doi":"10.17516/1997-1397-2020-13-4-574-582","DOIUrl":null,"url":null,"abstract":"Abstract. The unidirectional motion of two viscous immiscible incompressible liquids in a flat channel is studied. An unsteady temperature gradient is set on the bottom solid wall, and the upper wall is a free boundary. Liquids contact on a flat interface. The motion is caused by the combined action of thermogravitational and thermocapillary forces and a given total unsteady flow rate in the layers. The corresponding initial boundary value problem is conjugate and inverse, since the pressure gradient along the channel is determined together with the velocity and temperature field. An exact stationary solution was found for it. In Laplace images, the solution of the non-stationary problem is found in the quadrature forms. It was established that if the temperature on the bottom wall and the flow rate stabilize with time, then the motion goes to a stationary state with time. This fact indicates the stability of the stationary solution with respect to unidirectional unsteady perturbations. The calculation results showing various methods of controlling motion by setting the temperature on the wall are given.","PeriodicalId":422202,"journal":{"name":"Journal of Siberian Federal University. Mathematics and Physics","volume":"542 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Layered Motion of Two Immiscible Liquids with a Free Boundary\",\"authors\":\"E. Lemeshkova\",\"doi\":\"10.17516/1997-1397-2020-13-4-574-582\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. The unidirectional motion of two viscous immiscible incompressible liquids in a flat channel is studied. An unsteady temperature gradient is set on the bottom solid wall, and the upper wall is a free boundary. Liquids contact on a flat interface. The motion is caused by the combined action of thermogravitational and thermocapillary forces and a given total unsteady flow rate in the layers. The corresponding initial boundary value problem is conjugate and inverse, since the pressure gradient along the channel is determined together with the velocity and temperature field. An exact stationary solution was found for it. In Laplace images, the solution of the non-stationary problem is found in the quadrature forms. It was established that if the temperature on the bottom wall and the flow rate stabilize with time, then the motion goes to a stationary state with time. This fact indicates the stability of the stationary solution with respect to unidirectional unsteady perturbations. The calculation results showing various methods of controlling motion by setting the temperature on the wall are given.\",\"PeriodicalId\":422202,\"journal\":{\"name\":\"Journal of Siberian Federal University. Mathematics and Physics\",\"volume\":\"542 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Siberian Federal University. Mathematics and Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17516/1997-1397-2020-13-4-574-582\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Siberian Federal University. Mathematics and Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17516/1997-1397-2020-13-4-574-582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要研究了两种粘性不可混溶不可压缩液体在平坦通道内的单向运动。底部固体壁面设置非定常温度梯度,上部壁面为自由边界。液体在平面界面上接触。这种运动是由热重力和热毛细力的共同作用以及给定的层内总非定常流率引起的。由于沿通道的压力梯度是与速度场和温度场一起确定的,因此相应的初始边值问题是共轭反的。找到了它的精确定解。在拉普拉斯图象中,非平稳问题的解是在正交形式中找到的。建立了如果底壁温度和流量随时间稳定,则运动随时间趋于稳态。这一事实表明了稳态解相对于单向非定常扰动的稳定性。计算结果显示了通过设定壁面温度来控制运动的各种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Layered Motion of Two Immiscible Liquids with a Free Boundary
Abstract. The unidirectional motion of two viscous immiscible incompressible liquids in a flat channel is studied. An unsteady temperature gradient is set on the bottom solid wall, and the upper wall is a free boundary. Liquids contact on a flat interface. The motion is caused by the combined action of thermogravitational and thermocapillary forces and a given total unsteady flow rate in the layers. The corresponding initial boundary value problem is conjugate and inverse, since the pressure gradient along the channel is determined together with the velocity and temperature field. An exact stationary solution was found for it. In Laplace images, the solution of the non-stationary problem is found in the quadrature forms. It was established that if the temperature on the bottom wall and the flow rate stabilize with time, then the motion goes to a stationary state with time. This fact indicates the stability of the stationary solution with respect to unidirectional unsteady perturbations. The calculation results showing various methods of controlling motion by setting the temperature on the wall are given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信