耦合平移不变张量空间ICA在多组复值任务相关和静息状态fMRI数据中的应用

Li-Dan Kuang, Zhi-Ming He
{"title":"耦合平移不变张量空间ICA在多组复值任务相关和静息状态fMRI数据中的应用","authors":"Li-Dan Kuang, Zhi-Ming He","doi":"10.1109/ICIVC55077.2022.9886323","DOIUrl":null,"url":null,"abstract":"Multi-subject complex-valued fMRI data, inheriting high noise and spatiotemporal variability, do not well conform canonical polyadic decomposition (CPD) model. Therefore, spatial independence, phase sparsity and temporal shift-invariance have been added in CPD model, e.g., shift-invariant tensorial spatial independent component analysis (sT-sICA). However, different subjects may belong to different groups and scans, paradigms and responses may vary among groups. Considering that coupled CPD (CCPD) can preserve common and different information among different groups, we propose a novel coupled sT-sICA in the framework of shift-invariant CCPD model. We estimate shared spatial maps (SMs) by performing three-stage principal component analysis and ICA, and calculate group-specific time courses (TCs), subject-specific time delays and intensities by conducting complex-valued shift-invariant rank-one matrix approximation. Actual task-related and resting-state fMRI data experiments verify that the proposed method extracts better shared SMs and group-specific TCs and captures larger temporal differences between healthy controls and schizophrenic patients than sT-sICA and CCPD.","PeriodicalId":227073,"journal":{"name":"2022 7th International Conference on Image, Vision and Computing (ICIVC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Coupled Shift-Invariant Tensorial Spatial ICA Applied to Multi-Group Complex-Valued Task-Related and Resting-State fMRI Data\",\"authors\":\"Li-Dan Kuang, Zhi-Ming He\",\"doi\":\"10.1109/ICIVC55077.2022.9886323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-subject complex-valued fMRI data, inheriting high noise and spatiotemporal variability, do not well conform canonical polyadic decomposition (CPD) model. Therefore, spatial independence, phase sparsity and temporal shift-invariance have been added in CPD model, e.g., shift-invariant tensorial spatial independent component analysis (sT-sICA). However, different subjects may belong to different groups and scans, paradigms and responses may vary among groups. Considering that coupled CPD (CCPD) can preserve common and different information among different groups, we propose a novel coupled sT-sICA in the framework of shift-invariant CCPD model. We estimate shared spatial maps (SMs) by performing three-stage principal component analysis and ICA, and calculate group-specific time courses (TCs), subject-specific time delays and intensities by conducting complex-valued shift-invariant rank-one matrix approximation. Actual task-related and resting-state fMRI data experiments verify that the proposed method extracts better shared SMs and group-specific TCs and captures larger temporal differences between healthy controls and schizophrenic patients than sT-sICA and CCPD.\",\"PeriodicalId\":227073,\"journal\":{\"name\":\"2022 7th International Conference on Image, Vision and Computing (ICIVC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 7th International Conference on Image, Vision and Computing (ICIVC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIVC55077.2022.9886323\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 7th International Conference on Image, Vision and Computing (ICIVC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIVC55077.2022.9886323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

多主体复杂值fMRI数据具有高噪声和时空变异性的特点,不符合标准多矢分解(CPD)模型。因此,在CPD模型中加入了空间独立性、相稀疏性和时间位移不变性,如位移不变性张量空间独立分量分析(sT-sICA)。然而,不同的被试可能属于不同的群体,不同群体的扫描、范式和反应可能不同。考虑到耦合CPD (CCPD)可以保留不同群体之间的共同信息和不同信息,我们提出了一种基于位移不变CCPD模型框架的新型耦合sT-sICA。我们通过执行三阶段主成分分析和ICA来估计共享空间地图(SMs),并通过执行复值移位不变秩一矩阵近似来计算群体特定时间过程(tc)、受试者特定时间延迟和强度。实际任务相关和静息状态fMRI数据实验证实,与sT-sICA和CCPD相比,该方法提取了更好的共享短信息和群体特异性短信息,并捕获了健康对照和精神分裂症患者之间更大的时间差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coupled Shift-Invariant Tensorial Spatial ICA Applied to Multi-Group Complex-Valued Task-Related and Resting-State fMRI Data
Multi-subject complex-valued fMRI data, inheriting high noise and spatiotemporal variability, do not well conform canonical polyadic decomposition (CPD) model. Therefore, spatial independence, phase sparsity and temporal shift-invariance have been added in CPD model, e.g., shift-invariant tensorial spatial independent component analysis (sT-sICA). However, different subjects may belong to different groups and scans, paradigms and responses may vary among groups. Considering that coupled CPD (CCPD) can preserve common and different information among different groups, we propose a novel coupled sT-sICA in the framework of shift-invariant CCPD model. We estimate shared spatial maps (SMs) by performing three-stage principal component analysis and ICA, and calculate group-specific time courses (TCs), subject-specific time delays and intensities by conducting complex-valued shift-invariant rank-one matrix approximation. Actual task-related and resting-state fMRI data experiments verify that the proposed method extracts better shared SMs and group-specific TCs and captures larger temporal differences between healthy controls and schizophrenic patients than sT-sICA and CCPD.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信